cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095929 Number of closed walks of length 2n at a vertex of the cyclic graph on 10 nodes C_10.

Original entry on oeis.org

1, 2, 6, 20, 70, 254, 948, 3614, 13990, 54740, 215766, 854702, 3396916, 13530350, 53971350, 215492564, 860941798, 3441074654, 13757249460, 55010542910, 219993856006, 879848932052, 3519064567926, 14075391282830, 56299295324980, 225191238869774
Offset: 0

Views

Author

Herbert Kociemba, Jul 12 2004

Keywords

Comments

In general 2^n/m*Sum_{r=0..m-1} cos(2Pi*k*r/m)*cos(2Pi*r/m)^n is the number of walks of length n between two nodes at distance k in the cycle graph C_m. Here we have m=10 and k=0.
The number of round trips of odd length is zero. See the array w(N,L) and triangle a(K,N) given in A199571 for the general case. - Wolfdieter Lang, Nov 08 2011

Examples

			a(2)=6 from the six round trips from, say, vertex no. 1: 12121, 1(10)1(10)1, 121(10)1, 1(10)121, 12321 and 1(10)9(10)1. - _Wolfdieter Lang_, Nov 08 2011
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=FullSimplify[TrigToExp[(4^n/10)Sum[Cos[Pi*k/5]^(2n), {k, 0, 9}]]];Table[f[n], {n, 0, 35}]
    LinearRecurrence[{7,-13,4},{1,2,6},30] (* Harvey P. Dale, Dec 09 2018 *)
  • PARI
    Vec((1-5*x+5*x^2)/((1-4*x)*(1-3*x+x^2)) + O(x^50)) \\ Colin Barker, Apr 27 2016

Formula

a(n) = 4^n/10*Sum_{r=0..9} cos(Pi*r/5)^(2*n).
a(n) = 7*a(n-1)-13*a(n-2)+4*a(n-3).
G.f.: (-1+5*x-5*x^2)/((-1+4*x)(1-3*x+x^2)).
a(n/2) = ( 2^n +2*phi^n +2*(phi-1)^n )*(1+(-1)^n)/10, with the golden section phi = A001622. - Wolfdieter Lang, Nov 08 2011
a(n) = (2^(-n)*(8^n+2*(3-sqrt(5))^n+2*(3+sqrt(5))^n))/5. - Colin Barker, Apr 27 2016
a(n) = (4^n + 2*Lucas(2*n))/5. - Ehren Metcalfe, Apr 04 2019
a(n) = Sum_{k=-n..n} binomial(2*n, n+5*k). - Greg Dresden, Jan 05 2023