cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095930 Number of walks of length 2n between two nodes at distance 2 in the cycle graph C_10.

Original entry on oeis.org

1, 4, 15, 57, 220, 859, 3381, 13380, 53143, 211585, 843756, 3368259, 13455325, 53774932, 214978335, 859595529, 3437550076, 13748021995, 54986385093, 219930610020, 879683351911, 3518631073489, 14074256379660, 56296324109907, 225183460127725, 900729032983924
Offset: 1

Views

Author

Herbert Kociemba, Jul 12 2004

Keywords

Comments

In general (2^n/m)*Sum_{r=0..m-1} cos(2*Pi*k*r/m)*cos(2*Pi*r/m)^n is the number of walks of length n between two nodes at distance k in the cycle graph C_m. Here we have m=10 and k=2.
Equals INVERT transform of A014138: (1, 3, 8, 22, 64, 196, ...). - Gary W. Adamson, May 15 2009

Crossrefs

Cf. A014138.

Programs

  • Mathematica
    f[n_]:=FullSimplify[TrigToExp[(4^n/10)Sum[Cos[2Pi*k/5]Cos[Pi*k/5]^(2n), {k, 0, 9}]]];Table[f[n], {n, 1, 35}]
  • PARI
    Vec((-x+3*x^2)/((-1+4*x)*(1-3*x+x^2)) + O(x^50)) \\ Colin Barker, Apr 27 2016

Formula

a(n) = (4^n/10)*Sum_{r=0..9} cos(2*Pi*r/5)*cos(Pi*r/5)^(2*n).
a(n) = 7*a(n-1) - 13*a(n-2) + 4*a(n-3).
G.f.: (-x+3*x^2)/((-1+4*x)*(1-3*x+x^2)).
a(n) = (4^n + Lucas(2*n-1))/5. With a(0) = 0, binomial transform of A098703. - Ross La Haye, May 31 2006
a(n) = (2^(-1-n)*(2^(1+3*n) - (3-sqrt(5))^n*(1+sqrt(5)) + (-1+sqrt(5))*(3+sqrt(5))^n))/5. - Colin Barker, Apr 27 2016
E.g.f.: (2*exp(4*x) + (-1 - sqrt(5))*exp(((3 - sqrt(5))*x)/2) + (-1 + sqrt(5))*exp(((3 + sqrt(5))*x)/2))/10. - Ilya Gutkovskiy, Apr 27 2016