cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095975 -a(n) is inverse EULER transform of -A000041(n).

Original entry on oeis.org

1, 2, 5, 11, 27, 60, 147, 344, 839, 2031, 5017, 12379, 30921, 77407, 195121, 493451, 1253613, 3194303, 8166757, 20933754, 53798919, 138566312, 357647565, 924834079, 2395702801, 6215748612, 16150985071, 42024182520, 109485000777, 285578913962, 745728542725
Offset: 1

Views

Author

Vladeta Jovovic, Jul 20 2004

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): b:= proc(n) option remember; `if`(n=0,1, add(add(d, d=divisors(j)) *b(n-j), j=1..n)/n) end: c:= proc(n) option remember; local j; add(c(j) *b(n-j), j=1..n-1)-n*b(n) end: a:= -proc(n) option remember; local d; `if`(n=0,1, add(mobius(n/d)*c(d), d=divisors(n))/n) end: seq(a(n), n=1..40); # Alois P. Heinz, Sep 09 2008
    # The function EulerInvTransform is defined in A358451.
    a := -EulerInvTransform(n -> -combinat:-numbpart(n)):
    seq(a(n), n = 1..31); # Peter Luschny, Nov 21 2022
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d, {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; c[n_] := c[n] = Sum[c[j]*b[n-j], {j, 1, n-1}] - n*b[n]; a[n_] := -If[n == 0, 1, Sum[MoebiusMu[n/d]*c[d], {d, Divisors[n]}]/n]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)

Formula

Moebius transform of A055890(n).
a(n) ~ d^n / n, d = 2.69832910647421123126399866618837... (see A246828). - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms from Alois P. Heinz, Sep 09 2008