cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095987 a(n) = gcd(n!!, (n-1)!!) where n!! = A006882.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 15, 15, 45, 45, 315, 315, 315, 315, 2835, 2835, 14175, 14175, 155925, 155925, 467775, 467775, 6081075, 6081075, 42567525, 42567525, 638512875, 638512875, 638512875, 638512875, 10854718875, 10854718875, 97692469875, 97692469875
Offset: 0

Views

Author

Leroy Quet, Jul 18 2004

Keywords

Comments

Let f_n(m) be a multifactorial: for m = positive integer, f_n(m) = Product_{k=0..floor((m-1)/n)} (m - k*n). E.g., f_2(m) = m!!. f_n(0) is defined as 1.

Crossrefs

a(2n) gives A049606.

Programs

  • Maple
    a:= n-> (d-> gcd(d(n), d(n-1)))(doublefactorial):
    seq(a(n), n=0..40);  # Alois P. Heinz, Oct 26 2019
  • Mathematica
    f[n_] := GCD[n!!, (n - 1)!! ]; Table[ f[n], {n, 35}]
    GCD@@#&/@Partition[Range[0,40]!!,2,1] (* Harvey P. Dale, May 04 2015 *)

Formula

a(2m) = a(2m+1) = A049606(m).

Extensions

Edited and extended by Robert G. Wilson v, Jul 19 2004
Missing a(0)=1 inserted by Alois P. Heinz, Oct 26 2019