A095987 a(n) = gcd(n!!, (n-1)!!) where n!! = A006882.
1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 15, 15, 45, 45, 315, 315, 315, 315, 2835, 2835, 14175, 14175, 155925, 155925, 467775, 467775, 6081075, 6081075, 42567525, 42567525, 638512875, 638512875, 638512875, 638512875, 10854718875, 10854718875, 97692469875, 97692469875
Offset: 0
Keywords
Crossrefs
a(2n) gives A049606.
Programs
-
Maple
a:= n-> (d-> gcd(d(n), d(n-1)))(doublefactorial): seq(a(n), n=0..40); # Alois P. Heinz, Oct 26 2019
-
Mathematica
f[n_] := GCD[n!!, (n - 1)!! ]; Table[ f[n], {n, 35}] GCD@@#&/@Partition[Range[0,40]!!,2,1] (* Harvey P. Dale, May 04 2015 *)
Formula
a(2m) = a(2m+1) = A049606(m).
Extensions
Edited and extended by Robert G. Wilson v, Jul 19 2004
Missing a(0)=1 inserted by Alois P. Heinz, Oct 26 2019
Comments