A095989 INVERTi transform applied to the ordered Bell numbers.
1, 2, 8, 48, 368, 3376, 35824, 430512, 5773936, 85482032, 1384936688, 24380214960, 463522810736, 9468048895792, 206831329017328, 4812581925690288, 118843801816575088, 3104590192664327216, 85544737118902122224, 2479681575659312797872, 75434373300016828382576
Offset: 1
Keywords
Examples
Atomic set compositions a(1)=1: [{1}]; a(2)=2: [{12}], [{2},{1}]; a(3)=8: [{123}], [{2},{13}], [{3}, {12}], [{23}, {1}], [{13},{2}], [{2},{3},{1}], [{3},{1},{2}], [{3},{2},{1}]. Atomic preference functions a(1) = 1: 1; a(2)=2: 11, 21; a(3)=8: 111, 212, 221, 211, 121, 312, 231, 321.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..400
- Hugo Mlodecki, Decompositions of packed words and self duality of Word Quasisymmetric Functions, arXiv:2205.13949 [math.CO], 2022. See Table 2 p. 8.
Programs
-
Maple
A000670 := proc(n) option remember; local k; if n <=1 then 1 else add(binomial(n,k)*A000670(n-k),k=1..n); fi; end: add(A000670(k)*x^k,k=0..20): series(1-1/%,x,21): [seq(coeff(%,x,i),i=1..20)];
-
Mathematica
max = 20; Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1; s = 1 - 1/Sum[ Fubini[k, 1] q^k, {k, 0, max}] + O[q]^max; CoefficientList[s/q, q] (* Jean-François Alcover, Mar 31 2016 *)
Formula
G.f.: 1 - 1/Sum_{k>=0} A000670(k)*q^k.
G.f.: x/(1-2x/(1-2x/(1-4x/(1-3x/(1-6x/(1-4x/(1-8x/(1-5x/(1-...(continued fraction). - Philippe Deléham, Nov 22 2011
G.f.: (1-T(0))/x, where T(k) = 1 - x*(k+1)/(1 - 2*x*(k+1)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 29 2013
Let A(x) be the g.f. A095989, B(x) the g.f. A000670, then A(x) = (1 - 1/B(x))/x. - Sergei N. Gladkovskii, Nov 29 2013
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Oct 09 2019
Comments