cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A109062 Triangle read by rows: number of atomic set compositions of size n and length k (see description in A095989) 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 11, 23, 13, 1, 26, 112, 158, 71, 1, 57, 446, 1170, 1241, 461, 1, 120, 1593, 6880, 12871, 10912, 3447, 1, 247, 5337, 35503, 103887, 150413, 106031, 29093, 1, 502, 17190, 168982, 724148, 1589266, 1872286, 1128218, 273343, 1, 1013, 54008
Offset: 1

Views

Author

Mike Zabrocki, Aug 24 2005

Keywords

Comments

Also the number of free generators and primitives of the quasi-symmetric functions in non-commuting variables. - Mike Zabrocki, Aug 06 2006
Triangle given by [1,0,2,0,3,0,4,0,5,...] DELTA [1,2,2,3,3,4,4,5,5,6,6,7,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 01 2007
Apparently, the alternating sums vanish for n > 1. - F. Chapoton, Sep 05 2023

Examples

			Atomic set compositions a(1,1)=1: [{1}]; a(2,1)=1, a(2,2)=1: [{12}], [{2},{1}]; a(3,1)=1, a(3,2)=4, a(3,3)=3: [{123}], [{2},{13}], [{3}, {12}], [{23}, {1}], [{13},{2}], [{2},{3},{1}], [{3},{1},{2}], [{3},{2},{1}].
Triangle begins:
  1;
  1,  1;
  1,  4,   3;
  1, 11,  23,  13;
  1, 26, 112, 158, 71;
  ...
		

Crossrefs

Row sums are equal to A095989, a(n,n) = A003319, a(n,2) = A000295.

Programs

  • Maple
    f:=(n,k)->coeff(coeff(series(1-1/(1+add(add(q^m*t^i*
        Stirling2(m,i)*i!,i=1..m),m=1..n)),q,n+1),q,n),t,k):
    seq(seq(f(n,k), k=1..n), n=1..10);

Formula

G.f.: 1-1/(1+Sum_{n>=1} Sum_{k=1..n} q^n*t^k*Stirling2(n,k)*k!).

A163204 Triangle read by rows, A095989 convolved with A000670.

Original entry on oeis.org

1, 1, 2, 3, 2, 8, 13, 6, 8, 48, 75, 26, 24, 48, 368, 541, 150, 104, 144, 368, 3376, 4683, 1082, 600, 624, 1104, 3376, 35824, 47293, 9366, 4328, 3600, 4784, 10128, 35824, 430512, 545835, 94586, 37464, 25968, 27600, 43888, 107472, 430512, 5773936, 7087261, 1091670, 378344, 224784, 199088, 253200, 465712, 1291536, 5773936, 85482032
Offset: 1

Views

Author

Gary W. Adamson, Jul 23 2009

Keywords

Comments

Row sums = A000670 starting with offset 1: (1, 3, 13, 75, 541, 4683,...).
Left border = A000670, right border = A095989.
Second column: A076726. - Michel Marcus, Mar 31 2016

Examples

			First few rows of the triangle are:
1;
1, 2;
3, 2, 8;
13, 6, 8, 48;
75, 26, 24, 48, 368;
541, 150, 104, 144, 368, 3376;
4683, 1082, 600, 624, 1104, 3376, 35824;
47293, 9366, 4328, 3600, 4784, 10128, 35824, 430512;
...
		

Crossrefs

Programs

  • Mathematica
    max = 10; Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k - i - r)!), {i, 0, k - r}], {k, r, n}]; Fubini[0, 1] = 1; A000670 = Table[ Fubini[n, 1], {n, 0, max}]; s = 1 - 1/Sum[Fubini[k, 1] q^k, {k, 0, max}] + O[q]^max; A095989 = CoefficientList[s/q, q]; row[n_] := A095989[[1 ;; n]]*Reverse[A000670[[1 ;; n]]]; Table[row[n], {n, 1, max-1}] // Flatten (* Jean-François Alcover, Mar 31 2016 *)

Formula

Descending antidiagonals of a multiplication table formed by convolving A095989 with A000670, where A095989 is the INVERTi transform of A000670 starting (1, 3, 13, 75,...).

Extensions

a(23) corrected by Jean-François Alcover, Mar 31 2016
Terms a(37) onward added by G. C. Greubel, Dec 10 2016

A095993 Inverse Euler transform of the ordered Bell numbers A000670.

Original entry on oeis.org

1, 1, 2, 10, 59, 446, 3965, 41098, 484090, 6390488, 93419519, 1498268466, 26159936547, 494036061550, 10035451706821, 218207845446062, 5057251219268460, 124462048466812950, 3241773988588098756, 89093816361187396674, 2576652694087142999421
Offset: 0

Views

Author

Mike Zabrocki, Jul 18 2004

Keywords

Crossrefs

Programs

  • Maple
    read transforms; A000670 := proc(n) option remember; local k; if n <=1 then 1 else add(binomial(n,k)*A000670(n-k),k=1..n); fi; end; [seq(A000670(i),i=1..30)]; EULERi(%);
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(A000670):
    seq(a(n), n = 0..22); # Peter Luschny, Nov 21 2022
  • Mathematica
    max = 25; b[0] = 1; b[n_] := b[n] = Sum[Binomial[n, k]*b[n-k], {k, 1, n}]; bb = Array[b, max]; s = {}; For[i=1, i <= max, i++, AppendTo[s, i*bb[[i]] - Sum[s[[d]]*bb[[i-d]], {d, i-1}]]]; a[0] = 1; a[n_] := Sum[If[Divisible[ n, d], MoebiusMu[n/d], 0]*s[[d]], {d, 1, n}]/n; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Feb 25 2017 *)

Formula

Product(1/(1-q^n)^(a(n)), n >=1) = sum(A000670(k)*q^k, k>=0).
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Oct 09 2019

Extensions

a(0)=1 inserted by Alois P. Heinz, Feb 20 2017
Showing 1-3 of 3 results.