A109062 Triangle read by rows: number of atomic set compositions of size n and length k (see description in A095989) 1 <= k <= n.
1, 1, 1, 1, 4, 3, 1, 11, 23, 13, 1, 26, 112, 158, 71, 1, 57, 446, 1170, 1241, 461, 1, 120, 1593, 6880, 12871, 10912, 3447, 1, 247, 5337, 35503, 103887, 150413, 106031, 29093, 1, 502, 17190, 168982, 724148, 1589266, 1872286, 1128218, 273343, 1, 1013, 54008
Offset: 1
Examples
Atomic set compositions a(1,1)=1: [{1}]; a(2,1)=1, a(2,2)=1: [{12}], [{2},{1}]; a(3,1)=1, a(3,2)=4, a(3,3)=3: [{123}], [{2},{13}], [{3}, {12}], [{23}, {1}], [{13},{2}], [{2},{3},{1}], [{3},{1},{2}], [{3},{2},{1}]. Triangle begins: 1; 1, 1; 1, 4, 3; 1, 11, 23, 13; 1, 26, 112, 158, 71; ...
Links
- N. Bergeron and M. Zabrocki, The Hopf algebras of symmetric functions and quasisymmetric functions in non-commutative variables are free and cofree, arXiv:math/0509265 [math.CO], 2005.
- Ming-Jian Ding and Bao-Xuan Zhu, Some results related to Hurwitz stability of combinatorial polynomials, Advances in Applied Mathematics, Volume 152, (2024), 102591. See p. 7.
Crossrefs
Programs
-
Maple
f:=(n,k)->coeff(coeff(series(1-1/(1+add(add(q^m*t^i* Stirling2(m,i)*i!,i=1..m),m=1..n)),q,n+1),q,n),t,k): seq(seq(f(n,k), k=1..n), n=1..10);
Formula
G.f.: 1-1/(1+Sum_{n>=1} Sum_{k=1..n} q^n*t^k*Stirling2(n,k)*k!).
Comments