cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095993 Inverse Euler transform of the ordered Bell numbers A000670.

Original entry on oeis.org

1, 1, 2, 10, 59, 446, 3965, 41098, 484090, 6390488, 93419519, 1498268466, 26159936547, 494036061550, 10035451706821, 218207845446062, 5057251219268460, 124462048466812950, 3241773988588098756, 89093816361187396674, 2576652694087142999421
Offset: 0

Views

Author

Mike Zabrocki, Jul 18 2004

Keywords

Crossrefs

Programs

  • Maple
    read transforms; A000670 := proc(n) option remember; local k; if n <=1 then 1 else add(binomial(n,k)*A000670(n-k),k=1..n); fi; end; [seq(A000670(i),i=1..30)]; EULERi(%);
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(A000670):
    seq(a(n), n = 0..22); # Peter Luschny, Nov 21 2022
  • Mathematica
    max = 25; b[0] = 1; b[n_] := b[n] = Sum[Binomial[n, k]*b[n-k], {k, 1, n}]; bb = Array[b, max]; s = {}; For[i=1, i <= max, i++, AppendTo[s, i*bb[[i]] - Sum[s[[d]]*bb[[i-d]], {d, i-1}]]]; a[0] = 1; a[n_] := Sum[If[Divisible[ n, d], MoebiusMu[n/d], 0]*s[[d]], {d, 1, n}]/n; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Feb 25 2017 *)

Formula

Product(1/(1-q^n)^(a(n)), n >=1) = sum(A000670(k)*q^k, k>=0).
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Oct 09 2019

Extensions

a(0)=1 inserted by Alois P. Heinz, Feb 20 2017