A306431 Least number x > 1 such that n*x divides 1 + Sum_{k=1..x-1} k^(x-1).
2, 3, 13, 7, 19, 31, 41, 31, 13, 19, 43, 31, 23, 83, 139, 31, 61, 67, 113, 79, 251, 43, 19, 31, 199, 23, 13, 167, 53, 139, 83, 127, 157, 67, 293, 431, 443, 151, 103, 79, 61, 251, 113, 47, 337, 19, 179, 31, 41, 199, 67, 23, 19, 499, 181, 367, 607, 139, 257, 359
Offset: 1
Examples
a(4) = 7 because (1 + 1^6 + 2^6 + 3^6 + 4^6 + 5^6 + 6^6) / (4*7) = 67172 / 28 = 2399 and it is the least prime to have this property.
Links
- Robert Israel, Table of n, a(n) for n = 1..2000
- Eric Weisstein's World of Mathematics, Giuga's Conjecture
Crossrefs
Programs
-
Maple
P:=proc(j) local k,n; for n from 2 to 10^6 do if frac((add(k^(n-1),k=1..n-1)+1)/(j*n))=0 then RETURN(n); break; fi; od; end: seq(P(i),i=1..60);
-
Mathematica
a[n_] := For[x = 2, True, x++, If[Divisible[1+Sum[k^(x-1), {k, x-1}], n x], Return[x]]]; Array[a, 60] (* Jean-François Alcover, Oct 16 2020 *)
-
PARI
a(n) = my(x=2); while (((1 + sum(k=1, x-1, k^(x-1))) % (n*x)), x++); x; \\ Michel Marcus, Apr 27 2019
Formula
Least solution of n*x | 1 + Sum_{k=1..x-1} k^(x-1), for n = 1, 2, 3, ...
Comments