A096017 Numbers n such that 4^k*n, for k >= 0, have a unique partition into three distinct positive squares.
14, 21, 26, 29, 30, 35, 38, 41, 42, 45, 46, 49, 50, 53, 54, 59, 61, 65, 66, 70, 75, 78, 81, 83, 91, 93, 106, 107, 109, 113, 114, 115, 118, 121, 133, 137, 139, 142, 145, 147, 153, 157, 162, 169, 171, 178, 190, 198, 202, 205, 211, 214, 219, 226, 235, 243, 253, 258, 262, 265, 277, 283, 289, 291, 298, 307, 313, 323, 331, 337, 358, 363, 379, 387, 397, 403, 418, 427, 438, 442, 445, 457, 466, 498, 499, 505, 547, 562, 577, 603, 643, 723, 793, 883, 907, 1003, 1227, 1243, 1387, 1411, 1467, 1507
Offset: 1
Examples
793 is in this sequence because 793 = 6^2 + 9^2 + 26^2 is the unique partition of 793.
Crossrefs
Programs
-
Mathematica
lim=100; nLst=Table[0, {lim^2}]; Do[n=a^2+b^2+c^2; If[n>0 && n
0&]
Comments