A096020 Number of Pythagorean quintuples mod n; i.e., number of solutions to v^2 + w^2 + x^2 + y^2 = z^2 mod n.
1, 16, 81, 192, 625, 1296, 2401, 3072, 6723, 10000, 14641, 15552, 28561, 38416, 50625, 47104, 83521, 107568, 130321, 120000, 194481, 234256, 279841, 248832, 393125, 456976, 544563, 460992, 707281, 810000, 923521, 753664
Offset: 1
Examples
x + 16 x^2 + 81 x^3 + 192 x^4 + 625 x^5 + 1296 x^6 + 2401 x^7 + ...
Links
- L. Toth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014) # 14.11.6.
Crossrefs
Programs
-
Mathematica
Table[cnt=0; Do[If[Mod[v^2+w^2+x^2+y^2-z^2, n]==0, cnt++ ], {v, 0, n-1}, {w, 0, n-1}, {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 30}] a[ n_] := If[ n < 1, 0, Sum[ 1 - Sign[ Mod[ v^2 + w^2 + x^2 + y^2 - z^2, n]], {v, n}, {w, n}, {x, n}, {y, n}, {z, n}]]; (* Michael Somos, Jan 21 2012 *)