cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096020 Number of Pythagorean quintuples mod n; i.e., number of solutions to v^2 + w^2 + x^2 + y^2 = z^2 mod n.

Original entry on oeis.org

1, 16, 81, 192, 625, 1296, 2401, 3072, 6723, 10000, 14641, 15552, 28561, 38416, 50625, 47104, 83521, 107568, 130321, 120000, 194481, 234256, 279841, 248832, 393125, 456976, 544563, 460992, 707281, 810000, 923521, 753664
Offset: 1

Views

Author

T. D. Noe, Jun 15 2004

Keywords

Examples

			x + 16 x^2 + 81 x^3 + 192 x^4 + 625 x^5 + 1296 x^6 + 2401 x^7 + ...
		

Crossrefs

Cf. A062775 (number of solutions to x^2 + y^2 = z^2 mod n), A096018 (number of solutions to w^2 + x^2 + y^2 = z^2 mod n).

Programs

  • Mathematica
    Table[cnt=0; Do[If[Mod[v^2+w^2+x^2+y^2-z^2, n]==0, cnt++ ], {v, 0, n-1}, {w, 0, n-1}, {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 30}]
    a[ n_] := If[ n < 1, 0, Sum[ 1 - Sign[ Mod[ v^2 + w^2 + x^2 + y^2 - z^2, n]], {v, n}, {w, n}, {x, n}, {y, n}, {z, n}]]; (* Michael Somos, Jan 21 2012 *)