A096027 Numbers k such that (k+j) mod (2+j) = 1 for j from 0 to 10 and (k+11) mod 13 <> 1.
27723, 55443, 83163, 110883, 138603, 166323, 194043, 221763, 249483, 277203, 304923, 332643, 388083, 415803, 443523, 471243, 498963, 526683, 554403, 582123, 609843, 637563, 665283, 693003, 748443, 776163, 803883, 831603, 859323, 887043
Offset: 1
Examples
27723 mod 2 = 27724 mod 3 = 27725 mod 4 = 27726 mod 5 = 27727 mod 6 = 27728 mod 7 = 27729 mod 8 = 27730 mod 9 = 27731 mod 10 = 27731 mod 11 = 27731 mod 12 = 1 and 27732 mod 13 = 3, hence 27723 is in the sequence.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,1,-1).
Programs
-
Magma
[n: n in [1..900000] | forall{j: j in [0..10] | IsOne((n+j) mod (2+j)) and (n+11) mod 13 ne 1}]; // Bruno Berselli, Apr 11 2013
-
PARI
{k=11;m=900000;for(n=1,m,j=0;b=1;while(b&&j
Formula
G.f.: 3*x*(9239*x^12 +9240*x^11 +9240*x^10 +9240*x^9 +9240*x^8 +9240*x^7 +9240*x^6 +9240*x^5 +9240*x^4 +9240*x^3 +9240*x^2 +9240*x +9241) / ((x -1)^2*(x +1)*(x^2 -x +1)*(x^2 +1)*(x^2 +x +1)*(x^4 -x^2 +1)). - Colin Barker, Apr 11 2013
Comments