cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096035 Triangle read by rows: T(n,k) = (n+1,k)-th element of (M^4-M)/3, where M is the infinite lower Pascal's triangle matrix, 1<=k<=n.

Original entry on oeis.org

1, 5, 2, 21, 15, 3, 85, 84, 30, 4, 341, 425, 210, 50, 5, 1365, 2046, 1275, 420, 75, 6, 5461, 9555, 7161, 2975, 735, 105, 7, 21845, 43688, 38220, 19096, 5950, 1176, 140, 8, 87381, 196605, 196596, 114660, 42966, 10710, 1764, 180, 9, 349525, 873810, 983025
Offset: 1

Views

Author

Gary W. Adamson, Jun 17 2004

Keywords

Examples

			Triangle begins:
1;
5,       2;
21,     15,    3;
85,     84,   30,   4;
341,   425,  210,  50,  5;
1365, 2046, 1275, 420, 75,  6;
		

Crossrefs

Cf. A007318. First column gives A002450. Row sums give A016127.

Programs

  • Maple
    P:= proc(n) option remember; local M; M:= Matrix(n, (i, j)-> binomial(i-1, j-1)); (M^4-M)/3 end: T:= (n, k)-> P(n+1)[n+1, k]: seq(seq(T(n, k), k=1..n), n=1..11);  # Alois P. Heinz, Oct 07 2009
  • Mathematica
    rows=11; M[n_] := M[n] = Array[Binomial, {n, n}, {0, 0}]; P[n_] := (MatrixPower[ M[n], 4] - M[n])/3; Table[P[rows+1][[n+1, 1 ;; n]], {n, 1, rows}] // Flatten (* Jean-François Alcover, Mar 11 2015 *)

Extensions

Edited and more terms from Alois P. Heinz, Oct 07 2009