cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096039 Triangle read by rows: T(n,k) = (n+1,k)-th element of (M^5-M)/4, where M is the infinite lower Pascal's triangle matrix, 1<=k<=n.

Original entry on oeis.org

1, 6, 2, 31, 18, 3, 156, 124, 36, 4, 781, 780, 310, 60, 5, 3906, 4686, 2340, 620, 90, 6, 19531, 27342, 16401, 5460, 1085, 126, 7, 97656, 156248, 109368, 43736, 10920, 1736, 168, 8, 488281, 878904, 703116, 328104, 98406, 19656, 2604, 216, 9, 2441406
Offset: 1

Views

Author

Gary W. Adamson, Jun 17 2004

Keywords

Examples

			Triangle begins:
1;
6,       2;
31,     18,    3;
156,   124,   36,   4;
781,   780,  310,  60,  5;
3906, 4686, 2340, 620, 90, 6;
		

Crossrefs

Cf. A007318. First column gives A003463. Row sums give A016129.

Programs

  • Maple
    P:= proc(n) option remember; local M; M:= Matrix(n, (i, j)-> binomial(i-1, j-1)); (M^5-M)/4 end: T:= (n, k)-> P(n+1)[n+1, k]: seq(seq(T(n, k), k=1..n), n=1..11); # Alois P. Heinz, Oct 07 2009
  • Mathematica
    max = 11; M = Table[If[k > n, 0, Binomial[n, k]], {n, 0, max}, {k, 0, max} ];
    T = (MatrixPower[M, 5] - M)/4;
    Table[T[[n + 1]][[1 ;; n]] , {n, 1, max}] // Flatten (* Jean-François Alcover, May 24 2016 *)

Extensions

Edited with more terms by Alois P. Heinz, Oct 07 2009