A096047 a(n)=B(2n,4)/B(2n) (see comment).
1, 22, 346, 5482, 87466, 1398442, 22370986, 357919402, 5726644906, 91626056362, 1466015853226, 23456249457322, 375299974539946, 6004799525530282, 96076792140049066, 1537228673167043242, 24595658766377724586
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (21,-84,64).
Programs
-
Mathematica
LinearRecurrence[{21,-84,64},{1,22,346},20] (* Harvey P. Dale, Oct 13 2016 *)
-
Maxima
a[0]:1$ a[1]:22$ a[2]:346$ a[n]:=(1/3)*(4*16^n+4^n-2)$ A096047(n):=a[n]$ makelist(A096047(n),n,0,30); /* Martin Ettl, Nov 13 2012 */
-
PARI
a(n)=sum(i=0,2*n,4^i*sum(j=0,i,binomial(2*n,j)*bernfrac(j)))/bernfrac(2*n)
Formula
a(n)=(1/3)*(4*16^n+4^n-2); a(0)=1, a(1)=22, a(2)=346 and a(n)=21*a(n-1)-84*a(n-2)+64*a(n-3)
Comments