A096050 Decimal expansion of lim_{n->oo} B(2n,7)/(B(2n)*49^n) (see comment for B(n,k) definition).
1, 0, 6, 2, 7, 5, 1, 6, 9, 9, 6, 9, 0, 2, 1, 1, 0, 7, 8, 2, 4, 5, 8, 3, 2, 5, 1, 9, 3, 3, 2, 6, 2, 6, 6, 9, 8, 2, 2, 7, 9, 5, 4, 2, 1, 1, 5, 1, 7, 2, 6, 6, 3, 1, 5, 7, 7, 2, 4, 0, 8, 4, 2, 6, 8, 1, 7, 1, 9, 1, 0, 5, 7, 9, 2, 3, 9, 1, 8, 7, 8, 5, 9, 0, 4, 0, 0, 9, 5, 8, 2, 1, 1, 2, 2, 3, 5, 7, 7, 1, 3, 8, 8, 8, 2
Offset: 1
Programs
-
Mathematica
RealDigits[x/.FindRoot[ 1728x^3-6192x^2+7368x-2911==0,{x,1}, WorkingPrecision-> 120]][[1]] (* Harvey P. Dale, Feb 19 2012 *)
-
PARI
solve(q=1,1.1,1728*q^3-6192*q^2+7368*q-2911)
Formula
Limit_{n->oo} B(2n, 7)/(B(2n)*49^n) = 1.0627516996902110782... is the smallest root of 1728*X^3 - 6192*X^2 + 7368*X - 2911 = 0.
Comments