A096066 Triangle read by rows, 1<=k<=n: T(n,k) is the number of occurrences of the k-th prime in partitions of the n-th prime into primes.
1, 0, 1, 1, 1, 1, 3, 1, 1, 1, 10, 6, 2, 1, 1, 16, 9, 4, 2, 1, 1, 37, 22, 11, 6, 2, 1, 1, 54, 32, 15, 9, 3, 2, 1, 1, 107, 65, 32, 19, 7, 5, 2, 1, 1, 266, 165, 84, 50, 22, 15, 7, 5, 2, 1, 353, 219, 112, 69, 30, 21, 10, 7, 3, 1, 1, 779, 487, 254, 157, 73, 52, 27, 19, 10, 3, 2, 1, 1270, 795, 420, 261, 124, 90, 49, 36, 19, 7, 5, 1, 1
Offset: 1
Examples
n=5, A000040(5)=11 with A056768(5)=6 partitions into primes: T(5,1)=10 prime(1)=2 in 7+2+2=5+2+2+2=3+3+3+2=3+2+2+2+2, T(5,2)=6 prime(2)=3: in 5+3+3=3+3+3+2=3+2+2+2+2, T(5,3)=2 prime(3)=5: in 5+3+3=5+2+2+2, T(5,4)=1 prime(4)=7: in 7+2+2. Triangle begins: 1; 0, 1; 1, 1, 1; 3, 1, 1, 1; 10, 6, 2, 1, 1; ...
Crossrefs
Cf. A056768.
Programs
-
Mathematica
ip[p_] := ip[p] = IntegerPartitions[p, All, Select[Range[p], PrimeQ]] // Flatten; T[n_, k_] := Count[ip[Prime[n]], Prime[k]]; Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 23 2021 *)
Formula
T(n,n) = 1.
Extensions
Name modified by Jean-François Alcover, Sep 23 2021