A096202 Number of coverings of {1...n} by translation of a single set.
1, 2, 3, 6, 11, 22, 45, 92, 188, 382, 791, 1632, 3357, 6922, 14289, 29542, 61013, 126142, 260664, 538850, 1113372, 2300954, 4752279, 9814226, 20257082, 41798206, 86204773, 177729712, 366231907, 754356336, 1553063269, 3196028942, 6573883225, 13515943986, 27775807554
Offset: 1
Keywords
Examples
a(5)=11 because the following are the 11 coverings of {1...5}, each one of which only uses a single set and its translations: {{1},{2},{3},{4},{5}} {{1,2},{3,4},{4,5}} {{1,2},{2,3},{3,4},{4,5}} {{1,2},{2,3},{4,5}} {{1,3},{2,4},{3,5}} {{1,2,3},{2,3,4},{3,4,5}} {{1,2,3},{3,4,5}} {{1,2,4},{2,3,5}} {{1,3,4},{2,4,5}} {{1,2,3,4},{2,3,4,5}} {{1,2,3,4,5}}
Programs
-
PARI
covers(all, v)={ my(u=vector(#v+1)); for(i=1, #v, u[i+1]=bitor(u[i], v[i])); my(recurse(k,b) = if(bitnegimply(b,u[k+1]), 0, if(k==0, 1, my(t=bitnegimply(b,v[k])); if(t==b, 2*self()(k-1, b), self()(k-1, b) + self()(k-1, t)) ))); recurse(#v, all) } a(n)={sum(i=2^(n-1), 2^n-1, covers(2^n-1, vector(valuation(i,2)+1, j, i>>(j-1))))} \\ Andrew Howroyd, Nov 06 2019
Extensions
a(14)-a(32) from Andrew Howroyd, Nov 06 2019
a(33)-a(35) from Jinyuan Wang, Jun 09 2021
Comments