cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096179 Triangle read by rows: T(n,k) is the smallest positive integer having at least k of the first n positive integers as divisors.

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 4, 12, 1, 2, 4, 12, 60, 1, 2, 4, 6, 12, 60, 1, 2, 4, 6, 12, 60, 420, 1, 2, 4, 6, 12, 24, 120, 840, 1, 2, 4, 6, 12, 24, 72, 360, 2520, 1, 2, 4, 6, 12, 24, 60, 120, 360, 2520, 1, 2, 4, 6, 12, 24, 60, 120, 360, 2520, 27720, 1, 2, 4, 6, 12, 12, 24, 60, 120, 360
Offset: 1

Views

Author

Matthew Vandermast, Jun 19 2004

Keywords

Examples

			Triangle begins:
1
1 2
1 2 6
1 2 4 12
1 2 4 12 60
1 2 4  6 12 60
		

Crossrefs

Main diagonal is A003418. Minimum in column k is A061799(k). See also A094348, A096180.

Programs

  • Maple
    with(combstruct):
    a096179_row := proc(n) local k,L,l,R,LCM,comb;
    R := NULL; LCM := ilcm(seq(i,i=[$1..n]));
    for k from 1 to n-1 do
       L := LCM;
       comb := iterstructs(Combination(n),size=k):
       while not finished(comb) do
          l := nextstruct(comb);
          L := min(L,ilcm(op(l)));
       od;
       R := R,L;
    od;
    R,LCM end; # Peter Luschny, Dec 06 2010
  • Mathematica
    (* Triangular *)
    A096179[n_,k_]:=Min[LCM@@@Subsets[Range[n],{k}]];
    A002024[n_]:=Floor[1/2+Sqrt[2*n]];
    A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]],2];
    (* Linear *)
    A096179[n_]:=A096179[n]=A096179[A002024[n],A002260[n]];
    (* Enrique Pérez Herrero_, Dec 08 2010 *)
  • PARI
    A096179(n,k)={ my(m=lcm(vector(k,i,i))); forvec(v=vector(k-1,i,[2,n]), m>lcm(v) & m=lcm(v), 2); m } \\ M. F. Hasler, Nov 30 2010

Formula

T(n,k) = min { lcm(x_1,...,x_k) ; 0 < x_1 < ... < x_k <= n }