A096179 Triangle read by rows: T(n,k) is the smallest positive integer having at least k of the first n positive integers as divisors.
1, 1, 2, 1, 2, 6, 1, 2, 4, 12, 1, 2, 4, 12, 60, 1, 2, 4, 6, 12, 60, 1, 2, 4, 6, 12, 60, 420, 1, 2, 4, 6, 12, 24, 120, 840, 1, 2, 4, 6, 12, 24, 72, 360, 2520, 1, 2, 4, 6, 12, 24, 60, 120, 360, 2520, 1, 2, 4, 6, 12, 24, 60, 120, 360, 2520, 27720, 1, 2, 4, 6, 12, 12, 24, 60, 120, 360
Offset: 1
Examples
Triangle begins: 1 1 2 1 2 6 1 2 4 12 1 2 4 12 60 1 2 4 6 12 60
Links
- Wikipedia, Table of divisors.
Programs
-
Maple
with(combstruct): a096179_row := proc(n) local k,L,l,R,LCM,comb; R := NULL; LCM := ilcm(seq(i,i=[$1..n])); for k from 1 to n-1 do L := LCM; comb := iterstructs(Combination(n),size=k): while not finished(comb) do l := nextstruct(comb); L := min(L,ilcm(op(l))); od; R := R,L; od; R,LCM end; # Peter Luschny, Dec 06 2010
-
Mathematica
(* Triangular *) A096179[n_,k_]:=Min[LCM@@@Subsets[Range[n],{k}]]; A002024[n_]:=Floor[1/2+Sqrt[2*n]]; A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]],2]; (* Linear *) A096179[n_]:=A096179[n]=A096179[A002024[n],A002260[n]]; (* Enrique Pérez Herrero_, Dec 08 2010 *)
-
PARI
A096179(n,k)={ my(m=lcm(vector(k,i,i))); forvec(v=vector(k-1,i,[2,n]), m>lcm(v) & m=lcm(v), 2); m } \\ M. F. Hasler, Nov 30 2010
Formula
T(n,k) = min { lcm(x_1,...,x_k) ; 0 < x_1 < ... < x_k <= n }