A096241 Number of n-digit base-8 deletable primes.
4, 14, 50, 238, 1123, 5792, 30598, 166056, 927639, 5308458, 30984757
Offset: 1
Programs
-
Mathematica
b = 8; a = {4}; d = {2, 3, 5, 7}; For[n = 2, n <= 5, n++, p = Select[Range[b^(n - 1), b^n - 1], PrimeQ[#] &]; ct = 0; For[i = 1, i <= Length[p], i++, c = IntegerDigits[p[[i]], b]; For[j = 1, j <= n, j++, t = Delete[c, j]; If[t[[1]] == 0, Continue[]]; If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; ct++; Break[]]]]; AppendTo[a, ct]]; a (* Robert Price, Nov 13 2018 *)
-
Python
from sympy import isprime def ok(n, prevset, base=8): if not isprime(n): return False s = oct(n)[2:] si = (s[:i]+s[i+1:] for i in range(len(s))) return any(t[0] != '0' and int(t, base) in prevset for t in si) def afind(terms): s, snxt = {2, 3, 5, 7}, set() print(len(s), end=", ") for n in range(2, terms+1): for i in range(8**(n-1), 8**n): if ok(i, s): snxt.add(i) s, snxt = snxt, set() print(len(s), end=", ") afind(7) # Michael S. Branicky, Jan 14 2022
Extensions
a(6)-a(10) from Ryan Propper, Jul 19 2005
a(11) from D. S. McNeil, Dec 08 2009
Comments