A066537 Number of planar graphs on n labeled nodes.
1, 1, 2, 8, 64, 1023, 32071, 1823707, 163947848, 20402420291, 3209997749284, 604611323732576, 131861300077834966, 32577569614176693919, 8977083127683999891824, 2726955513946123452637877, 904755724004585279250537376, 325403988657293080813790670641
Offset: 0
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 419.
Links
- Keith M. Briggs and Gheorghe Coserea, Table of n, a(n) for n = 0..126, terms 0..42 from Keith M. Briggs.
- M. Bodirsky, C. Groepl and M. Kang, Generating Labeled Planar Graphs Uniformly At Random, ICALP03 Eindhoven, LNCS 2719, Springer Verlag (2003), 1095 - 1107.
- M. Bodirsky, C. Groepl and M. Kang, Generating Labeled Planar Graphs Uniformly At Random, Theoretical Computer Science, Volume 379, Issue 3, 15 June 2007, Pages 377-386.
- Keith M. Briggs, Combinatorial Graph Theory
- O. Gimenez and M. Noy, Asymptotic enumeration and limit laws of planar graphs, arXiv:math/0501269 [math.CO], 2005.
- Yu Nakahata, Jun Kawahara, Takashi Horiyama, Shin-ichi Minato, Implicit Enumeration of Topological-Minor-Embeddings and Its Application to Planar Subgraph Enumeration, arXiv:1911.07465 [cs.DS], 2019.
- A. Taraz, D. Osthus and H. J. Proemel, On random planar graphs, the number of planar graphs and their triangulations Journal of Combinatorial Theory, Series B, 88 (2003), 119-134.
Programs
-
PARI
Q(n,k) = { \\ c-nets with n-edges, k-vertices if (k < 2+(n+2)\3 || k > 2*n\3, return(0)); sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2* (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) - 4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1)))); }; A100960_ser(N) = { my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)), q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n,k)),'t))), d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1), g2=intformal(t^2/2*((1+d)/(1+x)-1))); serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n,'t),'x,'t)))*'x); }; A096331_seq(N) = Vec(subst(A100960_ser(N+2),'t,1)); A096332_seq(N) = { my(x='x+O('x^(N+3)), b=x^2/2+serconvol(Ser(A096331_seq(N))*x^3, exp(x))); Vec(serlaplace(intformal(serreverse(x/exp(b'))/x))); }; A066537_seq(N) = { my(x='x+O('x^(N+3))); Vec(serlaplace(exp(serconvol(Ser(A096332_seq(N))*'x,exp(x))))); }; A066537_seq(15) \\ Gheorghe Coserea, Aug 10 2017
Formula
Extensions
More terms from Manuel Bodirsky (bodirsky(AT)informatik.hu-berlin.de), Sep 15 2003
Entry revised by N. J. A. Sloane, Jun 17 2006
Comments