cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096331 Number of 2-connected planar graphs on n labeled nodes.

Original entry on oeis.org

1, 10, 237, 10707, 774924, 78702536, 10273189176, 1631331753120, 304206135619160, 65030138045062272, 15659855107404275280, 4191800375194003211360, 1234179902360142341550240, 396280329098426228719121280, 137779269467538258010671193472
Offset: 3

Views

Author

Steven Finch, Aug 02 2004

Keywords

Comments

Recurrence known, see Bodirsky et al.

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 419.

Crossrefs

Cf. A066537. Row sums of A100960.

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    A100960_ser(N) = {
    my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)),
       q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n,k)),'t))),
       d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
       g2=intformal(t^2/2*((1+d)/(1+x)-1)));
       serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n,'t),'x,'t)))*'x);
    };
    Vec(subst(A100960_ser(20),'t,1)) \\ Gheorghe Coserea, Aug 10 2017

Formula

a(n) ~ g * n^(-7/2) * r^n * n!, where g=0.00000370445941594... (A291835) and r=26.1841125556... (A291836) (see Bender link). - Gheorghe Coserea, Sep 03 2017

Extensions

More terms from Gheorghe Coserea, Aug 05 2017