A096362 Order in which prime factors first occur in the Lucas sequence.
2, 3, 7, 11, 29, 47, 19, 41, 199, 23, 521, 281, 31, 2207, 3571, 107, 9349, 2161, 211, 43, 307, 139, 461, 1103, 101, 151, 90481, 5779, 14503, 59, 19489, 2521, 3010349, 1087, 4481, 9901, 67, 63443, 71, 911, 103681, 54018521, 29134601, 79, 859, 1601, 3041
Offset: 1
Keywords
Links
- Metin Sariyar, Table of n, a(n) for n = 1..750
- J. Brillhart, P. L. Montgomery and R. D. Silverman, Tables of Fibonacci and Lucas factorizations, Math. Comp. 50 (1988), 251-260, S1-S15. Math. Rev. 89h:11002.
- Ron Knott, The First 200 Lucas numbers and their factors
- Hisanori Mishima, Lucas numbers (n=1 to 100)
Crossrefs
Cf. A000032.
Programs
-
Maple
L:= gfun:-rectoproc({a(n)=a(n-1)+a(n-2),a(0)=2,a(1)=1},a(n),remember): S:= {}: Res:= NULL: for n from 0 to 100 do P:= numtheory:-factorset(L(n)) minus S; Res:= Res, op(sort(convert(P,list))); S:= S union P; od: Res; # Robert Israel, Jan 06 2020
-
Mathematica
PrimeFactors[n_Integer] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; L[n_] := Fibonacci[n - 1] + Fibonacci[n + 1]; pf = {}; f[n_] := Block[{p = PrimeFactors[L[n]]}, l = Length[p]; k = 1; While[k <= l, If[ Position[ pf, p[[k]]] == {}, AppendTo[ pf, p[[k]] ]]; k++ ]]; Do[ f[n], {n, 40}]; pf (* Robert G. Wilson v, Jul 01 2004 *) Drop[DeleteDuplicates[Flatten[Table[First/@FactorInteger[LucasL[n]],{n,0,100}]]],{2}] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2012 *)
Extensions
Edited, corrected and extended by Robert G. Wilson v, Jul 01 2004