cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096403 Number of partitions of n in which number of least parts is equal to least part.

Original entry on oeis.org

1, 0, 1, 2, 2, 2, 5, 5, 9, 10, 14, 17, 26, 30, 41, 52, 67, 81, 108, 129, 168, 204, 257, 311, 393, 470, 584, 705, 865, 1036, 1270, 1514, 1838, 2192, 2639, 3137, 3767, 4455, 5321, 6287, 7469, 8794, 10419, 12230, 14427, 16904, 19863, 23210, 27207, 31701, 37039
Offset: 1

Views

Author

Vladeta Jovovic, Aug 07 2004

Keywords

Examples

			a(7)=5 because we have 61, 421, 331, 322 and 2221.
		

Crossrefs

Cf. A006141.

Programs

  • Maple
    G:=sum((x^(m^2)-x^(m*(m+1)))/product(1-x^i,i=m..80),m=1..80): Gser:=series(G,x=0,70): seq(coeff(Gser,x^n),n=1..60); # Emeric Deutsch, Jul 25 2005
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i>n, 0, b(n, i+1)+b(n-i, i)))
        end:
    a:= n-> add(b(n-j^2, j+1), j=1..isqrt(n)):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jan 25 2021
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0, b[n, i+1] + b[n-i, i]]];
    a[n_] := Sum[b[n - j^2, j+1], {j, 1, Sqrt[n]}];
    Array[a, 55] (* Jean-François Alcover, Mar 01 2021, after Alois P. Heinz *)

Formula

G.f.: Sum((x^(m^2)-x^(m*(m+1)))/Product(1-x^i, i=m..infinity), m=1..infinity).
G.f.: sum(n>=1, x^(n^2) / prod(k>=n+1,1-x^k)). [Joerg Arndt, Mar 23 2011]
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(5/2) * n^(3/2)). - Vaclav Kotesovec, Jun 15 2025

Extensions

More terms from Emeric Deutsch, Jul 25 2005