A096403 Number of partitions of n in which number of least parts is equal to least part.
1, 0, 1, 2, 2, 2, 5, 5, 9, 10, 14, 17, 26, 30, 41, 52, 67, 81, 108, 129, 168, 204, 257, 311, 393, 470, 584, 705, 865, 1036, 1270, 1514, 1838, 2192, 2639, 3137, 3767, 4455, 5321, 6287, 7469, 8794, 10419, 12230, 14427, 16904, 19863, 23210, 27207, 31701, 37039
Offset: 1
Examples
a(7)=5 because we have 61, 421, 331, 322 and 2221.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A006141.
Programs
-
Maple
G:=sum((x^(m^2)-x^(m*(m+1)))/product(1-x^i,i=m..80),m=1..80): Gser:=series(G,x=0,70): seq(coeff(Gser,x^n),n=1..60); # Emeric Deutsch, Jul 25 2005 # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0, b(n, i+1)+b(n-i, i))) end: a:= n-> add(b(n-j^2, j+1), j=1..isqrt(n)): seq(a(n), n=1..55); # Alois P. Heinz, Jan 25 2021
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0, b[n, i+1] + b[n-i, i]]]; a[n_] := Sum[b[n - j^2, j+1], {j, 1, Sqrt[n]}]; Array[a, 55] (* Jean-François Alcover, Mar 01 2021, after Alois P. Heinz *)
Formula
G.f.: Sum((x^(m^2)-x^(m*(m+1)))/Product(1-x^i, i=m..infinity), m=1..infinity).
G.f.: sum(n>=1, x^(n^2) / prod(k>=n+1,1-x^k)). [Joerg Arndt, Mar 23 2011]
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(5/2) * n^(3/2)). - Vaclav Kotesovec, Jun 15 2025
Extensions
More terms from Emeric Deutsch, Jul 25 2005