cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A257530 Decimal expansion of sqrt(Pi/sqrt(e)).

Original entry on oeis.org

1, 3, 8, 0, 3, 8, 8, 4, 4, 7, 0, 4, 3, 1, 4, 2, 9, 7, 4, 7, 7, 3, 4, 1, 5, 2, 4, 6, 7, 2, 5, 5, 9, 1, 2, 7, 4, 2, 7, 0, 7, 7, 2, 4, 6, 5, 5, 6, 2, 2, 1, 0, 7, 9, 8, 4, 5, 0, 2, 4, 6, 8, 5, 0, 7, 1, 5, 7, 4, 8, 2, 6, 5, 6, 1, 0, 4, 6, 6, 3, 9, 1, 8, 9, 2, 3, 8, 0, 6, 4, 3, 4, 3, 3, 8, 4, 1, 2, 5, 6, 0, 5, 6, 1, 2
Offset: 1

Views

Author

Stanislav Sykora, Apr 28 2015

Keywords

Examples

			1.38038844704314297477341524672559127427077246556221079845024685...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[Pi/Sqrt@ E], 120]] (* Michael De Vlieger, Apr 30 2015 *)
  • PARI
    a = sqrt(Pi/sqrt(exp(1)))

Formula

Equals integral[-inf..+inf](exp(-x^2)*cos(k*x)) = sqrt(Pi/exp(k^2/2)), for k = 1.

A096416 Decimal expansion of (Pi/e)^(1/4).

Original entry on oeis.org

1, 0, 3, 6, 8, 4, 5, 0, 2, 3, 8, 5, 8, 3, 9, 7, 1, 9, 0, 2, 7, 4, 1, 6, 7, 9, 6, 6, 9, 4, 1, 0, 0, 6, 5, 6, 6, 8, 4, 1, 3, 8, 9, 5, 1, 9, 1, 3, 1, 5, 2, 4, 5, 4, 9, 5, 4, 8, 4, 1, 2, 3, 2, 4, 6, 7, 4, 0, 3, 3, 7, 2, 9, 3, 9, 6, 6, 3, 5, 0, 8, 2, 8, 7, 0, 7, 1, 1, 2, 5, 5, 9, 3, 2, 6, 7, 5, 4, 6, 1, 3, 9, 6, 4, 1
Offset: 1

Views

Author

Mohammad K. Azarian, Aug 07 2004

Keywords

Examples

			1.03684502385839719027416796694100...
		

Crossrefs

Programs

  • Maple
    evalf(root[4](Pi/exp(1)) ; # R. J. Mathar, Oct 03 2011

Formula

equals the square root of A096414.
Showing 1-2 of 2 results.