A096443 Number of partitions of a multiset whose signature is the n-th partition (in Mathematica order).
1, 1, 2, 2, 3, 4, 5, 5, 7, 9, 11, 15, 7, 12, 16, 21, 26, 36, 52, 11, 19, 29, 38, 31, 52, 74, 66, 92, 135, 203, 15, 30, 47, 64, 57, 98, 141, 109, 137, 198, 296, 249, 371, 566, 877, 22, 45, 77, 105, 97, 171, 250, 109, 212, 269, 392, 592, 300, 444, 560, 850, 1315, 712, 1075
Offset: 0
Keywords
Examples
The 10th partition is [2,1,1]. The partitions of a multiset whose elements have multiplicities 2,1,1 - for example, {a,a,b,c} - are: {{a,a,b,c}} {{a,a,b},{c}} {{a,a,c},{b}} {{a,b,c},{a}} {{a,a},{b,c}} {{a,b},{a,c}} {{a,a},{b},{c}} {{a,b},{a},{c}} {{a,c},{a},{b}} {{b,c},{a},{a}} {{a},{a},{b},{c}} We see there are 11 partitions of this multiset, so a(10)=11. Also, a(n) is the number of distinct factorizations of A063008(n). For example, A063008(10) = 60 and 60 has 11 factorizations: 60, 30*2, 20*3, 15*4, 15*2*2, 12*5, 10*6, 10*3*2, 6*5*2, 5*4*3, 5*3*2*2 which confirms that a(10) = 11.
Links
- Jun Kyo Kim and Sang Guen Hahn, Recursive Formulae for the Multiplicative Partition Function, Internat. J. Math. & Math. Sci., 22(1) (1999), 213-216.
- A. Knopfmacher, M. E. Mays, A survey of factorization counting functions, International Journal of Number Theory, 1(4):563-581,(2005). See P(n) page 3.
Programs
-
Mathematica
MultiPartiteP[n : {___Integer?NonNegative}] := Block[{p, $RecursionLimit = 1024, firstPositive}, firstPositive = Compile[{{vv, _Integer, 1}}, Module[{k = 1}, Do[If[el == 0, k++, Break[]], {el, vv}]; k]]; p[{0 ...}] := 1; p[v_] := p[v] = Module[{len = Length[v], it, k, zeros, sum, pos, gcd}, it = Array[k, len]; pos = firstPositive[v]; zeros = ConstantArray[0, len]; sum = 0; Do[If[it == zeros, Continue[]]; gcd = GCD @@ it; sum += it[[pos]] DivisorSigma[-1, gcd] p[v - it];, Evaluate[Sequence @@ Thread[{it, 0, v}]]]; sum/v[[pos]]]; p[n]]; ParallelMap[MultiPartiteP, Flatten[Table[IntegerPartitions[k], {k, 0, 8}], 1]] (* Oleksandr Pavlyk, Jan 23 2011 *)
Extensions
Edited by Franklin T. Adams-Watters, May 16 2006
Comments