cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096447 Odd primes p such that the number of primes less than p that are congruent to 1 (mod 4) is equal to the number of primes less than p that are congruent to 3 (mod 4).

Original entry on oeis.org

3, 7, 19, 43, 463, 26839, 26861, 26879, 26891, 26903, 26927, 616783, 616799, 616841, 616849, 616877, 617039, 617269, 617369, 617401, 617429, 617453, 617471, 617479, 617521, 617537, 617587, 617689, 617717, 617723, 618439, 618547, 618619, 618643
Offset: 1

Views

Author

Yasutoshi Kohmoto, Aug 12 2004

Keywords

Comments

Assign the odd prime numbers to the rows of an array as follows:
Assign the first odd prime, prime(2) = 3, to row 0 (the top row).
For m > 2, assign prime(m) to the row immediately above or below the row to which prime(m-1) was assigned: above if prime(m-1) == 1 (mod 4), below otherwise.
The following array results:
row 0 (this sequence): 3, 7, 19, 43, 463, 26839, ...
row 1 (A096448): 5, 11, 17, 23, 31, 41, 47, 59, 67, 103, 127, ...
row 2 (A096451): 13, 29, 37, 53, 61, 71, 79, 101, 107, 113 ...
row 3: 73, 83, 97, 109, ...
row 4: 89, ...

Crossrefs

Programs

  • Mathematica
    lim = 10^5; k1 = 0; k3 = 0; p = 2; t = {}; Do[p = NextPrime[p]; If[k1 == k3, AppendTo[t, p]]; If[Mod[p, 4] == 1, k1++, k3++], {lim}]; t (* T. D. Noe, Sep 07 2011 *)

Formula

a(n) = A151800(A007351(n)), the next prime after A007351(n). - Joshua Zucker, May 03 2006

Extensions

More terms from Joshua Zucker, May 03 2006
"odd" added to definition by N. J. A. Sloane, Sep 09 2015