cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096459 Triangle read by rows: T(n,k) = n^2 mod prime(k), 1<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 0, 4, 0, 1, 1, 2, 1, 1, 0, 4, 3, 0, 0, 1, 1, 3, 10, 1, 1, 4, 0, 5, 10, 15, 0, 1, 4, 1, 9, 12, 13, 7, 1, 0, 1, 4, 4, 3, 13, 5, 12, 0, 1, 0, 2, 1, 9, 15, 5, 8, 13, 1, 1, 1, 2, 0, 4, 2, 7, 6, 5, 28, 0, 0, 4, 4, 1, 1, 8, 11, 6, 28, 20, 33, 1, 1, 4, 1, 4, 0, 16, 17, 8, 24, 14, 21, 5, 0, 1, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2004

Keywords

Comments

T(n,k)=0 iff k is a prime factor of n:
A001221(n) = number of zeros in n-th row;
T(n,1)=A000035(n);
T(n,2)=A011655(n) for n>1; T(n,3)=A070430(n) for n>2;
T(n,4)=A053879(n) for n>3; T(n,5)=A070434(n) for n>4;
T(n,6)=A070436(n) for n>5; T(n,7)=A054580(n) for n>6;
T(n,8)=A070441(n) for n>7; T(n,9)=A070445(n) for n>8;
T(n,10)=A070451(n) for n>9;
T(n,n)=A069547(n).

Examples

			Triangle begins:
1;
0, 1;
1, 0, 4;
0, 1, 1, 2;
1, 1, 0, 4, 3;
0, 0, 1, 1, 3, 10;
1, 1, 4, 0, 5, 10, 15;
......
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[n^2, Prime[k]], {n, 1, 10}, {k, 1, n}] (* G. C. Greubel, May 20 2017 *)