A096460 a(1) = 1, a(2) = 2; for n >= 2, a(n+1) = a(n) + sum of the unique prime factors of a(n).
1, 2, 4, 6, 11, 22, 35, 47, 94, 143, 167, 334, 503, 1006, 1511, 3022, 4535, 5447, 5879, 11758, 17639, 18239, 18336, 18532, 18688, 18763, 19439, 22223, 22607, 22704, 22763, 22896, 22954, 23478, 23546, 23802, 27774, 29322, 29508, 31972, 39967
Offset: 1
Examples
Given a(30)=22704 whose prime factorization is 2^4*3*11*43, add to a(30) its unique prime factors (2+3+11+43)=59 to give a(31)=22704+59=22763.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
Crossrefs
Cf. A008472.
Programs
-
Haskell
a096460 n = a096460_list !! (n-1) a096460_list = 1 : iterate (\x -> x + a008472 x) 2 -- Reinhard Zumkeller, Jul 16 2012
-
Mathematica
NestList[#+Total[Transpose[FactorInteger[#]][[1]]]&,1,40] (* Harvey P. Dale, Nov 24 2011 *)
Formula
a(n+1) = a(n) + A008472(a(n)), n > 1. - Reinhard Zumkeller, Jul 16 2012
Extensions
Definition corrected May 10 2008