cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096470 Triangle T(n,k), read by rows, formed by setting all entries in the zeroth column and in the main diagonal ((n,n) entries) to 1 and defining the rest of the entries by the recursion T(n,k) = T(n-1,k) - T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, -1, 2, 1, 1, -2, 4, -3, 1, 1, -3, 7, -10, 11, 1, 1, -4, 11, -21, 32, -31, 1, 1, -5, 16, -37, 69, -100, 101, 1, 1, -6, 22, -59, 128, -228, 329, -328, 1, 1, -7, 29, -88, 216, -444, 773, -1101, 1102, 1, 1, -8, 37, -125, 341, -785, 1558, -2659, 3761, -3760, 1, 1, -9, 46, -171, 512, -1297, 2855, -5514, 9275, -13035, 13036, 1
Offset: 0

Views

Author

Gerald McGarvey, Aug 12 2004

Keywords

Comments

If A(x,y) is the bivariate o.g.f. of a triangular array T(n,k) and B(x,y) is the bivariate o.g.f. of its mirror image T(n,n-k), then B(x,y) = A(x*y, y^(-1)) and A(x,y) = B(x*y, y^(-1)). - Petros Hadjicostas, Aug 08 2020

Examples

			From _Petros Hadjicostas_, Aug 08 2020: (Start)
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  1,  1;
  1,  0,  1;
  1, -1,  2,   1;
  1, -2,  4,  -3,   1;
  1, -3,  7, -10,  11,    1;
  1, -4, 11, -21,  32,  -31,   1;
  1, -5, 16, -37,  69, -100, 101,    1;
  1, -6, 22, -59, 128, -228, 329, -328, 1;
  ... (End)
		

Crossrefs

Programs

  • PARI
    T(n, k) = if ((k==0) || (n==k), 1, if ((n<0) || (k<0), 0, if (n>k, T(n-1, k) - T(n, k-1), 0)));
    for(n=0, 10, for (k=0, n, print1(T(n, k), ", ")); print); \\ Petros Hadjicostas, Aug 08 2020

Formula

T(n,k) = T(n-1,k) - T(n,k-1) for 1 <= k <= n-1 with T(n,0) = 1 = T(n,n) for n >= 0.
The 2nd column is T(n,2) = A000124(n-2) for n >= 2 (Hogben's central polygonal numbers).
The "first subdiagonal" (unsigned) is |T(n,n-1)| = A032357(n-1) for n >= 1 (Convolution of Catalan numbers and powers of -1).
The "2nd subdiagonal" (unsigned) is |T(n,n-2)| = A033297(n) = Sum_{i=0..n-2} (-1)^i*C(n-1-i) for n >= 2, where C(n) are the Catalan numbers (A000108).
From Petros Hadjicostas, Aug 08 2020: (Start)
|T(n,k)| = |A168377(n,n-k)| for 0 <= k <= n.
Bivariate o.g.f.: (1 + y + x*y*c(-x*y))/((1 - x*y)*(1 - x + y)), where c(x) = 2/(1 + sqrt(1 - 4*x)) = o.g.f. of A000108.
Bivariate o.g.f. of |T(n,k)|: (1 - y - x*y*c(x*y))/((1 + x*y)*(1 - x - y)) + 2*x*y/(1 - x^2*y^2).
Bivariate o.g.f. of mirror image T(n,n-k): (1 + y + x*y*c(-x))/((1 - x)*(1 + y - x*y^2)).
Bivariate o.g.f. of |T(n,n-k)|: (1 - y + x*y*c(x))/((1 + x)*(1 - y + x*y^2)) + 2*x/(1 - x^2). (End)

Extensions

Offset changed to 0 by Petros Hadjicostas, Aug 08 2020