A096472 Numbers containing squares of Pythagorean triples in their divisor set.
3600, 7200, 10800, 14400, 18000, 21600, 25200, 28800, 32400, 36000, 39600, 43200, 46800, 50400, 54000, 57600, 61200, 64800, 68400, 72000, 75600, 79200, 82800, 86400, 90000, 93600, 97200, 100800, 104400, 108000, 111600, 115200, 118800, 122400, 126000, 129600, 133200
Offset: 1
Examples
5^2 + 12^2 = 13^2: 5^2, 12^2 and 13^2 are divisors of 608400 = (13*5*3*2^2)^2, therefore 608400 is a term.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Tanya Khovanova, Recursive Sequences.
- Eric Weisstein's World of Mathematics, Pythagorean Triple.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
Range[50]*3600 (* Paolo Xausa, Jul 01 2025 *)
-
PARI
my(x='x+O('x^38)); Vec(3600*x/(1-x)^2) \\ Elmo R. Oliveira, Jun 30 2025
Formula
a(n) = n*60^2.
From Elmo R. Oliveira, Jun 30 2025: (Start)
G.f.: 3600*x/(1-x)^2.
E.g.f.: 3600*x*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)
Extensions
Name clarified by Tanya Khovanova, Jul 05 2021
More terms from Elmo R. Oliveira, Jun 30 2025
Comments