cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A096475 a(n) is the smallest lesser of twin prime p, such that prime(2 + p) - prime(p) = 2n (cf. A096474).

Original entry on oeis.org

3, 17, 11, 41, 71, 101, 29, 569, 881, 137, 1151, 521, 1289, 2027, 10331, 1229, 3461, 461, 2549, 2129, 6569, 6131, 14387, 34157, 5657, 4259, 44621, 17387, 25301, 11159, 56099, 34367, 64877, 23201, 80147, 73361, 21017, 46349, 162287, 94439, 469877, 122501, 35507
Offset: 3

Views

Author

Labos Elemer, Jun 23 2004

Keywords

Crossrefs

Programs

  • Mathematica
    {ta = Table[0, {1300}], tb = Table[0, {1300}], tc = Table[0, {1300}], u = 1}; Do[s = Prime[n + 1] - Prime[n]; If[s == 2, ta[[u]] = Prime[Prime[n + 1]] - Prime[Prime[n]]; tb[[u]] = n; tc[[u]] = Prime[n]; u = u + 1], {n, 1, 10000}]; a[n_] := tc[[FirstPosition[ta, 2 n][[1]]]]; Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Jul 28 2017, using Mathematica code for A096464 *)
  • PARI
    a(n) = {forprime(p=3, , if (isprime(p+2) && (prime(2+p)-prime(p) == 2*n), return (p))); p=3;} \\ Michel Marcus, Jul 28 2017
    
  • PARI
    list(len) = {my(v = vector(len), c = 0, q = 2, p1 = 2, p2 = 3, i); forprime(p3 = 5, , q++; if(isprime(q) && isprime(q-2), i = (p3-p1)/2 - 2; if(i <= len && v[i]==0, v[i] = q-2; c++; if(c == len, break))); p1 = p2; p2 = p3); v;} \\ Amiram Eldar, Feb 14 2025

Formula

a(n) = min{x; A096474(x) = 2n} for n = 3, 4, ...

Extensions

Name edited by Michel Marcus, Jul 28 2017
a(41)-a(45) from Michel Marcus, Jul 28 2017

A096476 a(n) = prime(A096475(n)).

Original entry on oeis.org

5, 59, 31, 179, 353, 547, 109, 4133, 6841, 773, 9293, 3733, 10559, 17627, 108643, 9973, 32261, 3259, 22811, 18617, 65731, 60821, 156371, 404029, 55733, 40637, 540619, 192677, 290897, 118297, 693877, 406883, 812527, 264659, 1022303, 928471
Offset: 3

Views

Author

Labos Elemer, Jun 23 2004

Keywords

Comments

Both a(n) and a(n) + 2*n are primes.
a(n) + 2*n is not necessarily the next prime after a(n).

Examples

			a(6) = 179 is a prime and 2*6 + 179 = 12 + 179 = 191 is also a prime, while pi(191) = 43, pi(179) = 41 are twin primes and 179 is the 6th term of A096475 (offset = 3).
		

Crossrefs

Programs

  • Mathematica
    {ta=Table[0, {1300}], tb=Table[0, {1300}], tc=Table[0, {1300}], u=1}; Do[s=Prime[n+1]-Prime[n];If[Equal[s, 2], ta[[u]]=Prime[Prime[n+1]]-Prime[Prime[n]];tb[[u]]=n; tc[[u]]=Prime[n];td[[u]]=Prime[Prime[n]];u=u+1], {n, 1, 10000}];td
  • PARI
    list(len) = {my(v = vector(len), c = 0, q = 2, p1 = 2, p2 = 3, i); forprime(p3 = 5, , q++; if(isprime(q) && isprime(q-2), i = (p3-p1)/2 - 2; if(i <= len && v[i]==0, v[i] = p1; c++; if(c == len, break))); p1 = p2; p2 = p3); v;} \\ Amiram Eldar, Feb 14 2025

Formula

a(n) = A000040(A096475(n)).
Showing 1-2 of 2 results.