A096503 Euler-phi of these numbers is a decimal repdigit.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 23, 24, 30, 46, 67, 69, 89, 92, 115, 134, 138, 178, 184, 223, 230, 276, 446, 669, 892, 1043, 1115, 1338, 1341, 1784, 2086, 2230, 2676, 2682, 446669, 666667, 893338, 895043, 902423, 1333334, 1340007, 1786676
Offset: 1
Examples
n=88888892, A000010(n)=44444444. Regular solutions: if x=repdigit+1 is prime, then phi[x]=repdigit (see A028988).
Links
- T. D. Noe, Table of n, a(n) for n = 1..182
- D. Bressoud, CNT.m Computational Number Theory Mathematica package.
Programs
-
Mathematica
Needs["CNT`"]; t = {PhiInverse[1]}; Do[n = FromDigits[Table[i, {j}]]; AppendTo[t, PhiInverse[n]], {j, 18}, {i, 2, 8, 2}]; t2 = Union[Flatten[t]]; t (* T. D. Noe, Feb 25 2014 *) Select[Range[2*10^5], Length@ Union@ IntegerDigits@ EulerPhi@ # == 1 &] (* Michael De Vlieger, Jul 02 2016 *)
-
PARI
isok(n) = d = digits(eulerphi(n)); vecmin(d) == vecmax(d); \\ Michel Marcus, Feb 25 2014