A096527 Number of permutations of divisors of n such that all sums of triple adjacent divisors are primes.
0, 0, 0, 6, 0, 0, 0, 12, 6, 4, 0, 12, 0, 4, 4, 4, 0, 0, 0, 16, 12, 0, 0, 20, 6, 4, 12, 20, 0, 0, 0, 0, 4, 4, 24, 48, 0, 4, 12, 50, 0, 0, 0, 4, 12, 0, 0, 0, 0, 0, 0, 16, 0, 0, 24, 136, 12, 4, 0, 286, 0, 0, 96, 0, 24, 0, 0, 30, 0, 0, 0, 0, 0, 0, 32, 16, 4, 0, 0
Offset: 1
Keywords
Examples
Divisors of n=10 are {1,2,5,10}: [1,2,10,5]->(1+2+10,2+5+10)=(13,17), [1,10,2,5]->(1+10+2,10+2+5)=(13,17) [5,2,10,1]->(5+2+10,2+10+1)=(17,13) and [5,10,2,1]->(5+10+2,10+2+1)=(17,13): therefore a(10)=4.
Programs
-
PARI
isokperm(v, nbd, d) = {for (j=1, nbd-2, if (! isprime(d[v[j]] + d[v[j+1]] + d[v[j+2]]), return (0));); return (1);} a(n) = {d = divisors(n); nbd = #d; if (nbd > 2, sum(i=1, nbd!, isokperm(numtoperm(nbd, i), nbd, d)));} \\ Michel Marcus, May 03 2014
Extensions
More terms from Michel Marcus, May 03 2014
Comments