A096551 Consecutive internal states of a linear congruential pseudo-random number generator with a parameter proposed by George Marsaglia as a "candidate for the best of all multipliers".
1, 69069, 475559465, 2801775573, 1790562961, 3104832285, 4238970681, 2135332261, 381957665, 1744831853, 1303896393, 1945705589, 2707602097, 4198202557, 3820321881, 201201733, 2583294017, 4003049741, 2417848425, 1454463253, 3332335313, 2360275549, 2093206905, 2813570789
Offset: 1
References
- D. E. Knuth, The Art of Computer Programming Third Edition. Vol. 2 Seminumerical Algorithms. Chapter 3.3.4 The Spectral Test, Page 108. Addison-Wesley 1997.
- G. Marsaglia, The structure of linear congruential sequences, in Applications of Number Theory to Numerical Analysis, (edited by S. K. Zaremba), Academic Press, New York, 249-286, 1972.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- George S. Fishman, Multiplicative Congruential Random Number Generators with Modulus 2^beta: An Exhaustive Analysis for beta = 32 and a Partial Analysis for beta = 48, Math. Comp., 54, 189 (1990), 331-344.
- Index entries for sequences related to pseudo-random numbers.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n, irem(69069 *a(n-1), 4294967296)) end: seq(a(n), n=1..30); # Alois P. Heinz, Jun 10 2014
-
Mathematica
NestList[Mod[#*69069, 2^32] &, 1, 50] (* Paolo Xausa, Aug 29 2024 *)
-
PARI
a(n)=lift(Mod(69069,2^32)^(n-1)) \\ Charles R Greathouse IV, Jan 14 2016
Formula
a(1)=1, a(n) = 69069 * a(n-1) mod 2^32. The sequence is periodic with period length 2^30. - corrected by Hugo Pfoertner, Aug 10 2011
a(n) == 1 (mod 4). Hugo Pfoertner, Nov 21 2024
Comments