A096555 Consecutive internal states of the linear congruential pseudo-random number generator RANDU that was used in the IBM Scientific Subroutine Library for IBM System/360 computers in the 1970's.
1, 65539, 393225, 1769499, 7077969, 26542323, 95552217, 334432395, 1146624417, 1722371299, 14608041, 1766175739, 1875647473, 1800754131, 366148473, 1022489195, 692115265, 1392739779, 2127401289, 229749723, 1559239569, 845238963, 1775695897, 899541067, 153401569
Offset: 1
References
- D. E. Knuth, The Art of Computer Programming Third Edition. Vol. 2 Seminumerical Algorithms. Chapter 3.3.4 The Spectral Test, Page 107. Addison-Wesley 1997.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Sarah Belet, 'Round the Twist, Blog Entry, Friday May 16 2014
- George Marsaglia, Random numbers fall mainly in the planes, Proceedings of the National Academy of Sciences, 61, 25-28, 1968.
- Hugo Pfoertner, Animation showing the deficient 3-d behavior, 2024.
- Index entries for sequences related to pseudo-random numbers.
- Index entries for linear recurrences with constant coefficients, order 536870912.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n, irem(65539 *a(n-1), 2147483648)) end: seq(a(n), n=1..30); # Alois P. Heinz, Jun 10 2014
-
Mathematica
NestList[Mod[#*65539, 2^31] &, 1, 50] (* Paolo Xausa, Aug 29 2024 *)
-
PARI
a(n)=lift(Mod(65539,2^31)^(n-1)) \\ Charles R Greathouse IV, Jan 13 2016
Formula
a(1)=1, a(n) = 65539*a(n-1) mod 2^31. The sequence is periodic with period length 2^29.
Comments