A096568 By rows, array T(n,k)=number of compositions of n with first part k and no equal adjacent parts.
1, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 2, 1, 1, 1, 5, 4, 2, 1, 1, 1, 9, 5, 3, 3, 1, 1, 1, 14, 10, 6, 3, 3, 1, 1, 1, 25, 18, 12, 6, 4, 3, 1, 1, 1, 46, 29, 20, 13, 6, 4, 3, 1, 1, 1, 78, 53, 33, 20, 13, 7, 4, 3, 1, 1, 1, 136, 95, 59, 36, 22, 13, 7, 4, 3, 1, 1, 1, 242, 161, 104, 65, 36, 22, 14, 7, 4, 3, 1, 1, 1
Offset: 1
Examples
Triangle starts 01: 1, 02: 0, 1, 03: 1, 1, 1, 04: 2, 0, 1, 1, 05: 2, 2, 1, 1, 1, 06: 5, 4, 2, 1, 1, 1, 07: 9, 5, 3, 3, 1, 1, 1, 08: 14, 10, 6, 3, 3, 1, 1, 1, 09: 25, 18, 12, 6, 4, 3, 1, 1, 1, 10: 46, 29, 20, 13, 6, 4, 3, 1, 1, 1, 11: 78, 53, 33, 20, 13, 7, 4, 3, 1, 1, 1, 12: 136, 95, 59, 36, 22, 13, 7, 4, 3, 1, 1, 1, 13: 242, 161, 104, 65, 36, 22, 14, 7, 4, 3, 1, 1, 1, 14: 419, 283, 181, 111, 67, 38, 22, 14, 7, 4, 3, 1, 1, 1, 15: 733, 500, 319, 194, 118, 68, 38, 23, 14, 7, 4, 3, 1, 1, 1, 16: 1291, 869, 557, 342, 201, 120, 70, 38, 23, 14, 7, 4, 3, 1, 1, 1, ... T(6,1)=5 counts the compositions 1+2+1+2, 1+2+3, 1+3+2, 1+4+1, 1+5.
Links
- Joerg Arndt, Table of n, a(n) for n = 1..1035 (rows 1..45, flattened)
Programs
-
PARI
R=20; M=matrix(R,R); T(n,k) = if (n==0, k==0, if (k==0, n==0, M[n,k] ) ); { for (n=1, R, for(k=1, n, M[n,k] = sum(j=0,n, T(n-k, j)) - T(n-k, k); ); ); } for (n=1,R,for(k=1,n, print1(M[n,k],", ") ); ); \\ Joerg Arndt, May 21 2013
Formula
Define s(0)=1, T(1, 1)=1 and T(i, j)=0 for j>i. For n>=2 and 1<=k<=n, define s(n)=T(n, 1)+T(n, 2)+...+T(n, n) and T(n, k)=s(n-k)-T(n-k, k).
G.f. for column k: C(x)*x^k/(1+x^k) where C(x) is the g.f. for A003242. - John Tyler Rascoe, May 16 2024
Extensions
Corrected by Joerg Arndt, May 21 2013
Comments