cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A096569 Number of compositions of n with first part 1 and no equal adjacent parts; this is column 1 of the array in A096568.

Original entry on oeis.org

1, 0, 1, 2, 2, 5, 9, 14, 25, 46, 78, 136, 242, 419, 733, 1291, 2251, 3938, 6905, 12073, 21129, 37001, 64741, 113304, 198344, 347126, 607532, 1063387, 1861149, 3257410, 5701362, 9978711, 17465052, 30568232, 53501720, 93640745, 163894183
Offset: 1

Views

Author

Clark Kimberling, Jun 27 2004

Keywords

Crossrefs

Formula

Define s(0)=1, T(1, 1)=1 and T(i, j)=0 for j>i. For n>=2 and 1<=k<=n, define s(n)=T(n, 1)+T(n, 2)+...+T(n, n) and T(n, k)=s(n-k)-T(n-k, k). (This is array A096568.)

A096570 Number of compositions of n with first part 2 and no equal adjacent parts; this is column 2 of the array in A096568.

Original entry on oeis.org

0, 1, 1, 0, 2, 4, 5, 10, 18, 29, 53, 95, 161, 283, 500, 869, 1524, 2673, 4665, 8170, 14313, 25032, 43817, 76710, 134228, 234938, 411242, 719720, 1259677, 2204816, 3858882, 6753956, 11821191, 20689807, 36212093, 63380145, 110930372, 194154783
Offset: 1

Views

Author

Clark Kimberling, Jun 27 2004

Keywords

Crossrefs

Formula

Define s(0)=1, T(1, 1)=1 and T(i, j)=0 for j>i. For n>=2 and 1<=k<=n, define s(n)=T(n, 1)+T(n, 2)+...+T(n, n) and T(n, k)=s(n-k)-T(n-k, k). (This is array A096568.)

A096571 Number of compositions of n with first part 3 and no equal adjacent parts; this is column 3 of the array in A096568.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 3, 6, 12, 20, 33, 59, 104, 181, 319, 557, 971, 1705, 2985, 5218, 9138, 15993, 27984, 48992, 85749, 150061, 262656, 459721, 804597, 1408263, 2464815, 4313962, 7550509, 13215258, 23129801, 40482775, 70854694, 124012664
Offset: 1

Views

Author

Clark Kimberling, Jun 27 2004

Keywords

Crossrefs

Formula

Define s(0)=1, T(1, 1)=1 and T(i, j)=0 for j>i. For n>=2 and 1<=k<=n, define s(n)=T(n, 1)+T(n, 2)+...+T(n, n) and T(n, k)=s(n-k)-T(n-k, k). (This is array A096568.)

A096572 Number of compositions of n with first part 4 and no equal adjacent parts; this is column 4 of the array in A096568.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 3, 3, 6, 13, 20, 36, 65, 111, 194, 342, 596, 1041, 1830, 3200, 5593, 9802, 17148, 30002, 52537, 91940, 160897, 281646, 492933, 862718, 1510022, 2642890, 4625626, 8096054, 14170051, 24800873, 43407658, 75973898, 132972414
Offset: 1

Views

Author

Clark Kimberling, Jun 27 2004

Keywords

Crossrefs

Formula

Define s(0)=1, T(1, 1)=1 and T(i, j)=0 for j>i. For n>=2 and 1<=k<=n, define s(n)=T(n, 1)+T(n, 2)+...+T(n, n) and T(n, k)=s(n-k)-T(n-k, k). (This is array A096568.)

A003242 Number of compositions of n such that no two adjacent parts are equal (these are sometimes called Carlitz compositions).

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 14, 23, 39, 71, 124, 214, 378, 661, 1152, 2024, 3542, 6189, 10843, 18978, 33202, 58130, 101742, 178045, 311648, 545470, 954658, 1670919, 2924536, 5118559, 8958772, 15680073, 27443763, 48033284, 84069952, 147142465, 257534928, 450748483, 788918212
Offset: 0

Views

Author

E. Rodney Canfield

Keywords

Examples

			From _Joerg Arndt_, Oct 27 2012:  (Start)
The 23 such compositions of n=7 are
[ 1]  1 2 1 2 1
[ 2]  1 2 1 3
[ 3]  1 2 3 1
[ 4]  1 2 4
[ 5]  1 3 1 2
[ 6]  1 3 2 1
[ 7]  1 4 2
[ 8]  1 5 1
[ 9]  1 6
[10]  2 1 3 1
[11]  2 1 4
[12]  2 3 2
[13]  2 4 1
[14]  2 5
[15]  3 1 2 1
[16]  3 1 3
[17]  3 4
[18]  4 1 2
[19]  4 2 1
[20]  4 3
[21]  5 2
[22]  6 1
[23]  7
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 191.

Crossrefs

Row sums of A232396, A241701.
Cf. A241902.
Column k=1 of A261960.
Cf. A048272.
Compositions with adjacent parts coprime are A167606.
The complement is counted by A261983.

Programs

Formula

a(n) = Sum_{k=1..n} A048272(k)*a(n-k), n>1, a(0)=1. - Vladeta Jovovic, Feb 05 2002
G.f.: 1/(1 - Sum_{k>0} x^k/(1+x^k)).
a(n) ~ c r^n where c is approximately 0.456387 and r is approximately 1.750243. (Formula from Knopfmacher and Prodinger reference.) - Franklin T. Adams-Watters, May 27 2010. With better precision: r = 1.7502412917183090312497386246398158787782058181381590561316586... (see A241902), c = 0.4563634740588133495321001859298593318027266156100046548066205... - Vaclav Kotesovec, Apr 30 2014
G.f. is the special case p=2 of 1/(1 - Sum_{k>0} (z^k/(1-z^k) - p*z^(k*p)/(1-z^(k*p)))), see A129922. - Joerg Arndt, Apr 28 2013
G.f.: 1/(1 - x * (d/dx) log(Product_{k>=1} (1 + x^k)^(1/k))). - Ilya Gutkovskiy, Oct 18 2018
Moebius transform of A329738. - Gus Wiseman, Nov 27 2019
For n>=2, a(n) = A128695(n) - A091616(n). - Vaclav Kotesovec, Jul 07 2020

Extensions

More terms from David W. Wilson
Showing 1-5 of 5 results.