A241902 Decimal expansion of a constant related to Carlitz compositions (A003242).
1, 7, 5, 0, 2, 4, 1, 2, 9, 1, 7, 1, 8, 3, 0, 9, 0, 3, 1, 2, 4, 9, 7, 3, 8, 6, 2, 4, 6, 3, 9, 8, 1, 5, 8, 7, 8, 7, 7, 8, 2, 0, 5, 8, 1, 8, 1, 3, 8, 1, 5, 9, 0, 5, 6, 1, 3, 1, 6, 5, 8, 6, 1, 3, 1, 7, 5, 1, 9, 3, 5, 1, 6, 7, 1, 5, 2, 0, 6, 0, 5, 0, 7, 7, 7, 4, 3, 8, 8, 7, 5, 6, 5, 7, 0, 9, 2, 4, 7, 1, 4, 1, 0, 0, 1
Offset: 1
Examples
1.7502412917183090312497386246398158787782...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..1500
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009, p. 201.
- A. Knopfmacher and H. Prodinger, On Carlitz compositions, European Journal of Combinatorics, Vol. 19, 1998, pp. 579-589.
Programs
-
Mathematica
RealDigits[r /. FindRoot[Exp[QPolyGamma[0, 1 + Pi*I/Log[r], r]] == r^(3/2)/(1-r), {r, 3/2}, WorkingPrecision -> 120], 10, 110][[1]] (* Vaclav Kotesovec, Jun 19 2023 *)
Formula
Equals lim n -> infinity A003242(n)^(1/n).
Comments