cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 218 results. Next

A003242 Number of compositions of n such that no two adjacent parts are equal (these are sometimes called Carlitz compositions).

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 14, 23, 39, 71, 124, 214, 378, 661, 1152, 2024, 3542, 6189, 10843, 18978, 33202, 58130, 101742, 178045, 311648, 545470, 954658, 1670919, 2924536, 5118559, 8958772, 15680073, 27443763, 48033284, 84069952, 147142465, 257534928, 450748483, 788918212
Offset: 0

Views

Author

E. Rodney Canfield

Keywords

Examples

			From _Joerg Arndt_, Oct 27 2012:  (Start)
The 23 such compositions of n=7 are
[ 1]  1 2 1 2 1
[ 2]  1 2 1 3
[ 3]  1 2 3 1
[ 4]  1 2 4
[ 5]  1 3 1 2
[ 6]  1 3 2 1
[ 7]  1 4 2
[ 8]  1 5 1
[ 9]  1 6
[10]  2 1 3 1
[11]  2 1 4
[12]  2 3 2
[13]  2 4 1
[14]  2 5
[15]  3 1 2 1
[16]  3 1 3
[17]  3 4
[18]  4 1 2
[19]  4 2 1
[20]  4 3
[21]  5 2
[22]  6 1
[23]  7
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 191.

Crossrefs

Row sums of A232396, A241701.
Cf. A241902.
Column k=1 of A261960.
Cf. A048272.
Compositions with adjacent parts coprime are A167606.
The complement is counted by A261983.

Programs

Formula

a(n) = Sum_{k=1..n} A048272(k)*a(n-k), n>1, a(0)=1. - Vladeta Jovovic, Feb 05 2002
G.f.: 1/(1 - Sum_{k>0} x^k/(1+x^k)).
a(n) ~ c r^n where c is approximately 0.456387 and r is approximately 1.750243. (Formula from Knopfmacher and Prodinger reference.) - Franklin T. Adams-Watters, May 27 2010. With better precision: r = 1.7502412917183090312497386246398158787782058181381590561316586... (see A241902), c = 0.4563634740588133495321001859298593318027266156100046548066205... - Vaclav Kotesovec, Apr 30 2014
G.f. is the special case p=2 of 1/(1 - Sum_{k>0} (z^k/(1-z^k) - p*z^(k*p)/(1-z^(k*p)))), see A129922. - Joerg Arndt, Apr 28 2013
G.f.: 1/(1 - x * (d/dx) log(Product_{k>=1} (1 + x^k)^(1/k))). - Ilya Gutkovskiy, Oct 18 2018
Moebius transform of A329738. - Gus Wiseman, Nov 27 2019
For n>=2, a(n) = A128695(n) - A091616(n). - Vaclav Kotesovec, Jul 07 2020

Extensions

More terms from David W. Wilson

A008289 Triangle read by rows: Q(n,m) = number of partitions of n into m distinct parts, n>=1, m>=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 3, 2, 1, 4, 3, 1, 4, 4, 1, 1, 5, 5, 1, 1, 5, 7, 2, 1, 6, 8, 3, 1, 6, 10, 5, 1, 7, 12, 6, 1, 1, 7, 14, 9, 1, 1, 8, 16, 11, 2, 1, 8, 19, 15, 3, 1, 9, 21, 18, 5, 1, 9, 24, 23, 7, 1, 10, 27, 27, 10, 1, 1, 10, 30, 34, 13, 1, 1, 11, 33, 39, 18, 2, 1, 11, 37
Offset: 1

Views

Author

Keywords

Comments

Row n contains A003056(n) = floor((sqrt(8*n+1)-1)/2) terms (number of terms increases by one at each triangular number). - Michael Somos, Dec 04 2002
Row sums give A000009.
Q(n,m) is the number of partitions of n whose greatest part is m and every number in {1,2,...,m} occurs as a part at least once. - Geoffrey Critzer, Nov 17 2011

Examples

			Q(8,3) = 2 since 8 can be written in 2 ways as sum of 3 distinct positive integers: 5+2+1 and 4+3+1.
Triangle starts:
  1;
  1;
  1,  1;
  1,  1;
  1,  2;
  1,  2,  1;
  1,  3,  1;
  1,  3,  2;
  1,  4,  3;
  1,  4,  4,  1;
  1,  5,  5,  1;
  1,  5,  7,  2;
  1,  6,  8,  3;
  1,  6, 10,  5;
  1,  7, 12,  6,  1;
  1,  7, 14,  9,  1;
  1,  8, 16, 11,  2;
  1,  8, 19, 15,  3;
  1,  9, 21, 18,  5;
  1,  9, 24, 23,  7;
  1, 10, 27, 27, 10,  1;
  1, 10, 30, 34, 13,  1;
  1, 11, 33, 39, 18,  2;
  1, 11, 37, 47, 23,  3;
  1, 12, 40, 54, 30,  5;
  1, 12, 44, 64, 37,  7;
  1, 13, 48, 72, 47, 11;
  1, 13, 52, 84, 57, 14, 1;
  1, 14, 56, 94, 70, 20, 1; ...
Q(8,3) = 2 because there are 2 partitions of 8 in which  1, 2 and 3 occur as a part at least once: (3,2,2,1), (3,2,1,1,1). - _Geoffrey Critzer_, Nov 17 2011
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115.

Crossrefs

Sum of n-th row is A000009(n). Sum(Q(n,k)*k, k>=1) = A015723(n).
A060016 is another version.
Cf. A032020.

Programs

  • Maple
    g:=product(1+t*x^j,j=1..40): gser:=simplify(series(g,x=0,32)): P[0]:=1: for n from 1 to 30 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 25 do seq(coeff(P[n],t,j),j=1..floor((sqrt(8*n+1)-1)/2)) od; # yields sequence in triangular form; Emeric Deutsch, Feb 21 2006
    # second Maple program:
    b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
          -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0)))
        end:
    T:= n-> subsop(1=NULL, b(n, n))[]:
    seq(T(n), n=1..40);  # Alois P. Heinz, Nov 18 2012
  • Mathematica
    q[n_, k_] := q[n, k] = If[n < k || k < 1, 0, If[n == 1, 1, q[n-k, k] + q[n-k, k-1]]]; Take[ Flatten[ Table[q[n, k], {n, 1, 24}, {k, 1, Floor[(Sqrt[8n+1] - 1)/2]}]], 91] (* Jean-François Alcover, Aug 01 2011, after PARI prog. *)
    (* As a triangular table: *)
    Table[Coefficient[Series[Product[1+t    x^i,{i,n}],{x,0,n}],x^n t^m],{n,24},{m,n}] (* Wouter Meeussen, Feb 22 2014 *)
    Table[Count[PowersRepresentations[n, k, 1], ?(Nor[MemberQ[#, 0], MemberQ[Differences@ #, 0]] &)], {n, 23}, {k, Floor[(Sqrt[8 n + 1] - 1)/2]}] // Flatten (* _Michael De Vlieger, Jul 12 2017 *)
    nrows = 24; d=Table[Select[IntegerPartitions[n], DeleteDuplicates[#] == # &],{n, nrows}] ;
    Flatten@Table[Table[Count[d[[n]], x_ /; Length[x] == m], {m, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, nrows}] (* Robert Price, Aug 17 2020 *)
  • PARI
    {Q(n, k) = if( k<0 || k>n,0, polcoeff( polcoeff( prod(i=1, n, 1 + y*x^i, 1 + x * O(x^n)), n), k))}; /* Michael Somos, Dec 04 2002 */
    
  • PARI
    Q(n,k)=if(nPaul D. Hanna
    
  • PARI
    {Q(n, k) = my(u); if( n<1 || k<1 || k>(sqrtint(8*n+1)-1)\2, 0, u = n - k *(k+1)/2; polcoeff( 1 / prod(i=1, k, 1 - x^i, 1 + x*O(x^u)), u))}; /* Michael Somos, Jul 11 2017 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A008289_T(n,k):
        if k<1 or nA008289_T(n-k,k)+A008289_T(n-k,k-1) # Chai Wah Wu, Sep 22 2023

Formula

G.f.: Product_{n>0} (1 + y*x^n) = 1 + Sum_{n>0, k>0} Q(n, k) * x^n * y^k. - Michael Somos, Dec 04 2002
Q(n, k) = Q(n-k, k) + Q(n-k, k-1) for n>k>=1, with Q(1, 1)=1, Q(n, 0)=0 (n>=1). - Paul D. Hanna, Mar 04 2005
G.f.: Sum_{n>0, k>0} x^n * y^(k*(k+1)/2) / Product_{i=1..k} (1 - y^i). - Michael Somos, Jul 11 2017
Sum_{k>=0} k! * Q(n,k) = A032020(n). - Alois P. Heinz, Feb 25 2020
Q(n, m) = A008284(n - m*(m-1)/2, m) = A026820(n - m*(m+1)/2, m), using for the latter, the extension A026820(n, k) = A026820(n, n) = A000041(n), for every k >= n >= 0. - Álvar Ibeas, Jul 23 2020

Extensions

Additional comments from Michael Somos, Dec 04 2002
Entry revised by N. J. A. Sloane, Nov 20 2006

A025047 Number of alternating compositions, i.e., compositions with alternating increases and decreases, starting with either an increase or a decrease.

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 12, 19, 29, 48, 75, 118, 186, 293, 460, 725, 1139, 1789, 2814, 4422, 6949, 10924, 17168, 26979, 42404, 66644, 104737, 164610, 258707, 406588, 639009, 1004287, 1578363, 2480606, 3898599, 6127152, 9629623, 15134213, 23785388, 37381849, 58750468
Offset: 0

Views

Author

Keywords

Comments

Original name: Wiggly sums: number of sums adding to n in which terms alternately increase and decrease or vice versa.

Examples

			From _Joerg Arndt_, Dec 28 2012: (Start)
There are a(7)=19 such compositions of 7:
[ 1] +  [ 1 2 1 2 1 ]
[ 2] +  [ 1 2 1 3 ]
[ 3] +  [ 1 3 1 2 ]
[ 4] +  [ 1 4 2 ]
[ 5] +  [ 1 5 1 ]
[ 6] +  [ 1 6 ]
[ 7] -  [ 2 1 3 1 ]
[ 8] -  [ 2 1 4 ]
[ 9] +  [ 2 3 2 ]
[10] +  [ 2 4 1 ]
[11] +  [ 2 5 ]
[12] -  [ 3 1 2 1 ]
[13] -  [ 3 1 3 ]
[14] +  [ 3 4 ]
[15] -  [ 4 1 2 ]
[16] -  [ 4 3 ]
[17] -  [ 5 2 ]
[18] -  [ 6 1 ]
[19] 0  [ 7 ]
For A025048(7)-1=10 of these the first two parts are increasing (marked by '+'),
and for A025049(7)-1=8 the first two parts are decreasing (marked by '-').
The composition into one part is counted by both A025048 and A025049.
(End)
		

Crossrefs

Dominated by A003242 (anti-run compositions), complement A261983.
The ascending case is A025048.
The descending case is A025049.
The version allowing pairs (x,x) is A344604.
These compositions are ranked by A345167, permutations A349051.
The complement is counted by A345192, ranked by A345168.
The version for patterns is A345194 (with twins: A344605).
A001250 counts alternating permutations, complement A348615.
A011782 counts compositions.
A032020 counts strict compositions.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A274174 counts compositions with equal parts contiguous.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A345164 counts alternating permutations of prime indices.
A345165 counts partitions w/o alternating permutation, ranked by A345171.
A345170 counts partitions w/ alternating permutation, ranked by A345172.

Programs

  • Maple
    b:= proc(n, l, t) option remember; `if`(n=0, 1, add(
          b(n-j, j, 1-t), j=`if`(t=1, 1..min(l-1, n), l+1..n)))
        end:
    a:= n-> 1+add(add(b(n-j, j, i), i=0..1), j=1..n-1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 31 2024
  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],wigQ]],{n,0,15}] (* Gus Wiseman, Jun 17 2021 *)
  • PARI
    D(n,f)={my(M=matrix(n,n,j,k,k>=j), s=M[,n]); for(b=1, n, f=!f; M=matrix(n,n,j,k,if(k1, M[j-k,k-1]), M[j-k,n]-M[j-k,k] ))); for(k=2, n, M[,k]+=M[,k-1]); s+=M[,n]); s~}
    seq(n) = concat([1], D(n,0) + D(n,1) - vector(n,j,1)) \\ Andrew Howroyd, Jan 31 2024

Formula

a(n) = A025048(n) + A025049(n) - 1 = sum_k[A059881(n, k)] = sum_k[S(n, k) + T(n, k)] - 1 where if n>k>0 S(n, k) = sum_j[T(n - k, j)] over j>k and T(n, k) = sum_j[S(n - k, j)] over k>j (note reversal) and if n>0 S(n, n) = T(n, n) = 1; S(n, k) = A059882(n, k), T(n, k) = A059883(n, k). - Henry Bottomley, Feb 05 2001
a(n) ~ c * d^n, where d = 1.571630806607064114100138865739690782401305155950789062725..., c = 0.82222360450823867604750473815253345888526601460811483897... . - Vaclav Kotesovec, Sep 12 2014
a(n) = A344604(n) + 1 - n mod 2. - Gus Wiseman, Jun 17 2021

Extensions

Better name using a comment of Franklin T. Adams-Watters by Peter Luschny, Oct 31 2021

A233564 c-squarefree numbers: positive integers which in binary are concatenation of distinct parts of the form 10...0 with nonnegative number of zeros.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 12, 16, 17, 18, 20, 24, 32, 33, 34, 37, 38, 40, 41, 44, 48, 50, 52, 64, 65, 66, 68, 69, 70, 72, 80, 81, 88, 96, 98, 104, 128, 129, 130, 132, 133, 134, 137, 140, 144, 145, 152, 160, 161, 176, 192, 194, 196, 200, 208, 256, 257, 258, 260, 261
Offset: 1

Views

Author

Vladimir Shevelev, Dec 13 2013

Keywords

Comments

Number of terms in interval [2^(n-1), 2^n) is the number of compositions of n with distinct parts (cf. A032020). For example, if n=6, then interval [2^5, 2^6) contains 11 terms {32,...,52}. This corresponds to 11 compositions with distinct parts of 6: 6, 5+1, 1+5, 4+2, 2+4, 3+2+1, 3+1+2, 2+3+1, 2+1+3, 1+3+2, 1+2+3.
From Gus Wiseman, Apr 06 2020: (Start)
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. This sequence lists all numbers k such that the k-th composition in standard order is strict. For example, the sequence together with the corresponding strict compositions begins:
0: () 38: (3,1,2) 98: (1,4,2)
1: (1) 40: (2,4) 104: (1,2,4)
2: (2) 41: (2,3,1) 128: (8)
4: (3) 44: (2,1,3) 129: (7,1)
5: (2,1) 48: (1,5) 130: (6,2)
6: (1,2) 50: (1,3,2) 132: (5,3)
8: (4) 52: (1,2,3) 133: (5,2,1)
9: (3,1) 64: (7) 134: (5,1,2)
12: (1,3) 65: (6,1) 137: (4,3,1)
16: (5) 66: (5,2) 140: (4,1,3)
17: (4,1) 68: (4,3) 144: (3,5)
18: (3,2) 69: (4,2,1) 145: (3,4,1)
20: (2,3) 70: (4,1,2) 152: (3,1,4)
24: (1,4) 72: (3,4) 160: (2,6)
32: (6) 80: (2,5) 161: (2,5,1)
33: (5,1) 81: (2,4,1) 176: (2,1,5)
34: (4,2) 88: (2,1,4) 192: (1,7)
37: (3,2,1) 96: (1,6) 194: (1,5,2)
(End)

Examples

			49 in binary has the following parts of the form 10...0 with nonnegative number of  zeros: (1),(1000),(1). Two of them are the same. So it is not in the sequence. On the other hand, 50 has distinct parts (1)(100)(10), thus it is a term.
		

Crossrefs

A subset of A333489 and superset of A333218.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Weighted sum is A029931.
- Partial sums from the right are A048793.
- Sum is A070939.
- Runs are counted by A124767.
- Reversed initial intervals A164894.
- Initial intervals are A246534.
- Constant compositions are A272919.
- Strictly decreasing compositions are A333255.
- Strictly increasing compositions are A333256.
- Anti-runs are counted by A333381.
- Anti-runs are A333489.

Programs

  • Mathematica
    bitPatt[n_]:=bitPatt[n]=Split[IntegerDigits[n,2],#1>#2||#2==0&];
    Select[Range[0,300],bitPatt[#]==DeleteDuplicates[bitPatt[#]]&] (* Peter J. C. Moses, Dec 13 2013 *)
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@stc[#]&] (* Gus Wiseman, Apr 04 2020 *)

Extensions

More terms from Peter J. C. Moses, Dec 13 2013
0 prepended by Gus Wiseman, Apr 04 2020

A001250 Number of alternating permutations of order n.

Original entry on oeis.org

1, 1, 2, 4, 10, 32, 122, 544, 2770, 15872, 101042, 707584, 5405530, 44736512, 398721962, 3807514624, 38783024290, 419730685952, 4809759350882, 58177770225664, 740742376475050, 9902996106248192, 138697748786275802, 2030847773013704704, 31029068327114173810
Offset: 0

Views

Author

Keywords

Comments

For n>1, a(n) is the number of permutations of order n with the length of longest run equal 2.
Boustrophedon transform of the Euler numbers (A000111). [Berry et al., 2013] - N. J. A. Sloane, Nov 18 2013
Number of inversion sequences of length n where all consecutive subsequences i,j,k satisfy i >= j < k or i < j >= k. a(4) = 10: 0010, 0011, 0020, 0021, 0022, 0101, 0102, 0103, 0112, 0113. - Alois P. Heinz, Oct 16 2019

Examples

			1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 32*x^5 + 122*x^6 + 544*x^7 + 2770*x^8 + ...
From _Gus Wiseman_, Jun 21 2021: (Start)
The a(0) = 1 through a(4) = 10 permutations:
  ()  (1)  (1,2)  (1,3,2)  (1,3,2,4)
           (2,1)  (2,1,3)  (1,4,2,3)
                  (2,3,1)  (2,1,4,3)
                  (3,1,2)  (2,3,1,4)
                           (2,4,1,3)
                           (3,1,4,2)
                           (3,2,4,1)
                           (3,4,1,2)
                           (4,1,3,2)
                           (4,2,3,1)
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 262.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000111. A diagonal of A010094.
The version for permutations of prime indices is A345164.
The version for compositions is A025047, ranked by A345167.
The version for patterns is A345194.
A049774 counts permutations avoiding adjacent (1,2,3).
A344614 counts compositions avoiding adjacent (1,2,3) and (3,2,1).
A344615 counts compositions avoiding the weak adjacent pattern (1,2,3).
A344654 counts partitions without a wiggly permutation, ranked by A344653.
A345170 counts partitions with a wiggly permutation, ranked by A345172.
A345192 counts non-wiggly compositions, ranked by A345168.
Row sums of A104345.

Programs

  • Haskell
    a001250 n = if n == 1 then 1 else 2 * a000111 n
    -- Reinhard Zumkeller, Sep 17 2014
    
  • Maple
    # With Eulerian polynomials:
    A := (n, x) -> `if`(n<2, 1/2/(1+I)^(1-n), add(add((-1)^j*binomial(n+1, j)*(m+1-j)^n, j=0..m)*x^m, m=0..n-1)):
    A001250 := n -> 2*(I-1)^(1-n)*exp(I*(n-1)*Pi/2)*A(n,I);
    seq(A001250(i), i=0..22); # Peter Luschny, May 27 2012
    # second Maple program:
    b:= proc(u, o) option remember;
          `if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
        end:
    a:= n-> `if`(n<2, 1, 2)*b(n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 29 2015
  • Mathematica
    a[n_] := 4*Abs[PolyLog[-n, I]]; a[0] = a[1] = 1; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 09 2016, after M. F. Hasler *)
    Table[Length[Select[Permutations[Range[n]],And@@(!(OrderedQ[#]||OrderedQ[Reverse[#]])&/@Partition[#,3,1])&]],{n,8}] (* Gus Wiseman, Jun 21 2021 *)
    a[0]:=1; a[1]:=1; a[n_]:=a[n]=1/(n (n-1)) Sum[a[n-1-k] a[k] k, {k,1, n-1}]; Join[{a[0], a[1]}, Map[2 #! a[#]&, Range[2,24]]] (* Oliver Seipel, May 27 2024 *)
  • PARI
    {a(n) = local(v=[1], t); if( n<0, 0, for( k=2, n+3, t=0; v = vector( k, i, if( i>1, t += v[k+1 - i]))); v[3])} /* Michael Somos, Feb 03 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( (tan(x + x * O(x^n)) + 1 / cos(x + x * O(x^n)))^2, n))} /* Michael Somos, Feb 05 2011 */
    
  • PARI
    A001250(n)=sum(m=0,n\2,my(k);(-1)^m*sum(j=0,k=n+1-2*m,binomial(k,j)*(-1)^j*(k-2*j)^(n+1))/k>>k)*2-(n==1)  \\ M. F. Hasler, May 19 2012
    
  • PARI
    A001250(n)=4*abs(polylog(-n,I))-(n==1)  \\ M. F. Hasler, May 20 2012
    
  • PARI
    my(x='x+O('x^66), egf=1+2*(tan(x)+1/cos(x))-2-x); Vec(serlaplace(egf)) /* Joerg Arndt, May 28 2012 */
    
  • Python
    from itertools import accumulate, islice
    def A001250_gen(): # generator of terms
        yield from (1,1)
        blist = (0,2)
        while True:
            yield (blist := tuple(accumulate(reversed(blist),initial=0)))[-1]
    A001250_list = list(islice(A001250_gen(),40)) # Chai Wah Wu, Jun 09-11 2022
    
  • Python
    from sympy import bernoulli, euler
    def A001250(n): return 1 if n<2 else abs(((1<Chai Wah Wu, Nov 13 2024
  • Sage
    # Algorithm of L. Seidel (1877)
    def A001250_list(n) :
        R = [1]; A = {-1:0, 0:2}; k = 0; e = 1
        for i in (0..n) :
            Am = 0; A[k + e] = 0; e = -e
            for j in (0..i) : Am += A[k]; A[k] = Am; k += e
            if i > 1 : R.append(A[-i//2] if i%2 == 0 else A[i//2])
        return R
    A001250_list(22) # Peter Luschny, Mar 31 2012
    

Formula

a(n) = coefficient of x^(n-1)/(n-1)! in power series expansion of (tan(x) + sec(x))^2 = (tan(x)+1/cos(x))^2.
a(n) = coefficient of x^n/n! in power series expansion of 2*(tan(x) + sec(x)) - 2 - x. - Michael Somos, Feb 05 2011
For n>1, a(n) = 2 * A000111(n). - Michael Somos, Mar 19 2011
a(n) = 4*|Li_{-n}(i)| - [n=1] = Sum_{m=0..n/2} (-1)^m*2^(1-k)*Sum_{j=0..k} binomial(k,j)*(-1)^j*(k-2*j)^(n+1)/k - [n=1], where k = k(m) = n+1-2*m and [n=1] equals 1 if n=1 and zero else; Li denotes the polylogarithm (and i^2 = -1). - M. F. Hasler, May 20 2012
From Sergei N. Gladkovskii, Jun 18 2012: (Start)
Let E(x) = 2/(1-sin(x))-1 (essentially the e.g.f.), then
E(x) = -1 + 2*(-1/x + 1/(1-x)/x - x^3/((1-x)*((1-x)*G(0) + x^2))) where G(k) = (2*k+2)*(2*k+3)-x^2+(2*k+2)*(2*k+3)*x^2/G(k+1); (continued fraction, Euler's 1st kind, 1-step).
E(x) = -1 + 2*(-1/x + 1/(1-x)/x - x^3/((1-x)*((1-x)*G(0) + x^2))) where G(k) = 8*k + 6 - x^2/(1 + (2*k+2)*(2*k+3)/G(k+1)); (continued fraction, Euler's 2nd kind, 2-step).
E(x) = (tan(x) + sec(x))^2 = -1 + 2/(1-x*G(0)) where G(k) = 1 - x^2/(2*(2*k+1)*(4*k+3) - 2*x^2*(2*k+1)*(4*k+3)/(x^2 - 4*(k+1)*(4*k+5)/G(k+1))); (continued fraction, 3rd kind, 3-step).
(End)
G.f.: conjecture: 2*T(0)/(1-x) -1, where T(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(1-x*(k+1))*(1-x*(k+2))/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 19 2013
a(n) ~ 2^(n+3) * n! / Pi^(n+1). - Vaclav Kotesovec, Sep 06 2014
a(n) = Sum_{k=0..n-1} A109449(n-1,k)*A000111(k). - Reinhard Zumkeller, Sep 17 2014

Extensions

Edited by Max Alekseyev, May 04 2012
a(0)=1 prepended by Alois P. Heinz, Nov 29 2015

A239455 Number of Look-and-Say partitions of n; see Comments.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 7, 10, 13, 16, 21, 28, 33, 45, 55, 65, 83, 105, 121, 155, 180, 217, 259, 318, 362, 445, 512, 614, 707, 850, 958, 1155, 1309, 1543, 1754, 2079, 2327, 2740, 3085, 3592, 4042, 4699, 5253, 6093, 6815, 7839, 8751, 10069, 11208, 12832, 14266, 16270
Offset: 0

Views

Author

Keywords

Comments

Suppose that p = x(1) >= x(2) >= ... >= x(k) is a partition of n. Let y(1) > y(2) > ... > y(h) be the distinct parts of p, and let m(i) be the multiplicity of y(i) for 1 <= i <= h. Then we can "look" at p as "m(1) y(1)'s and m(2) y(2)'s and ... m(h) y(h)'s". Reversing the m's and y's, we can then "say" the Look-and-Say partition of p, denoted by LS(p). The name "Look-and-Say" follows the example of Look-and-Say integer sequences (e.g., A005150). As p ranges through the partitions of n, LS(p) ranges through all the Look-and-Say partitions of n. The number of these is A239455(n).
The Look-and-Say array is distinct from the Wilf array, described at A098859; for example, the number of Look-and-Say partitions of 9 is A239455(9) = 16, whereas the number of Wilf partitions of 9 is A098859(9) = 15. The Look-and-Say partition of 9 which is not a Wilf partition of 9 is [2,2,2,1,1,1].
Conjecture: a partition is Look-and-Say iff it has a permutation with all distinct run-lengths. For example, the partition y = (2,2,2,1,1,1) has the permutation (2,2,1,1,1,2), with run-lengths (2,3,1), which are all distinct, so y is counted under a(9). - Gus Wiseman, Aug 11 2025
Also the number of integer partitions y of n such that there is a pairwise disjoint way to choose a strict integer partition of each multiplicity (or run-length) of y. - Gus Wiseman, Aug 11 2025

Examples

			The 11 partitions of 6 generate 7 Look-and-Say partitions as follows:
6 -> 111111
51 -> 111111
42 -> 111111
411 -> 21111
33 -> 222
321 -> 111111
3111 -> 3111
222 -> 33
2211 -> 222
21111 -> 411
111111 -> 6,
so that a(6) counts these 7 partitions: 111111, 21111, 222, 3111, 33, 411, 6.
		

Crossrefs

These include all Wilf partitions, counted by A098859, ranked by A130091.
These partitions are listed by A239454 in graded reverse-lex order.
Non-Wilf partitions are counted by A336866, ranked by A130092.
A variant for runs is A351204, complement A351203.
The complement is counted by A351293, apparently ranked by A351295, conjugate A381433.
These partitions appear to be ranked by A351294, conjugate A381432.
The non-Wilf case is counted by A351592.
For normal multisets we appear to have A386580, complement A386581.
A000110 counts set partitions, ordered A000670.
A000569 = graphical partitions, complement A339617.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A181819 = Heinz number of the prime signature of n (prime shadow).
A279790 counts disjoint families on strongly normal multisets.
A329738 = compositions with all equal run-lengths.
A386583 counts separable partitions, sums A325534, ranks A335433.
A386584 counts inseparable partitions, sums A325535, ranks A335448.
A386585 counts separable type partitions, sums A336106, ranks A335127.
A386586 counts inseparable type partitions, sums A386638 or A025065, ranks A335126.
Counting words with all distinct run-lengths:
- A032020 = binary expansions, for runs A351018, ranked by A044813.
- A329739 = compositions, for runs A351013, ranked by A351596.
- A351017 = binary words, for runs A351016.
- A351292 = patterns, for runs A351200.

Programs

  • Mathematica
    LS[part_List] := Reverse[Sort[Flatten[Map[Table[#[[2]], {#[[1]]}] &, Tally[part]]]]]; LS[n_Integer] := #[[Reverse[Ordering[PadRight[#]]]]] &[DeleteDuplicates[Map[LS, IntegerPartitions[n]]]]; TableForm[t = Map[LS[#] &, Range[10]]](*A239454,array*)
    Flatten[t](*A239454,sequence*)
    Map[Length[LS[#]] &, Range[25]](*A239455*)
    (* Peter J. C. Moses, Mar 18 2014 *)
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    Table[Length[Select[IntegerPartitions[n],Length[disjointFamilies[#]]>0&]],{n,0,10}] (* Gus Wiseman, Aug 11 2025 *)

A351294 Numbers whose multiset of prime factors has at least one permutation with all distinct run-lengths.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109
Offset: 1

Views

Author

Gus Wiseman, Feb 15 2022

Keywords

Comments

First differs from A130091 (Wilf partitions) in having 216.
See A239455 for the definition of Look-and-Say partitions.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
      1: ()            20: (3,1,1)         47: (15)
      2: (1)           23: (9)             48: (2,1,1,1,1)
      3: (2)           24: (2,1,1,1)       49: (4,4)
      4: (1,1)         25: (3,3)           50: (3,3,1)
      5: (3)           27: (2,2,2)         52: (6,1,1)
      7: (4)           28: (4,1,1)         53: (16)
      8: (1,1,1)       29: (10)            54: (2,2,2,1)
      9: (2,2)         31: (11)            56: (4,1,1,1)
     11: (5)           32: (1,1,1,1,1)     59: (17)
     12: (2,1,1)       37: (12)            61: (18)
     13: (6)           40: (3,1,1,1)       63: (4,2,2)
     16: (1,1,1,1)     41: (13)            64: (1,1,1,1,1,1)
     17: (7)           43: (14)            67: (19)
     18: (2,2,1)       44: (5,1,1)         68: (7,1,1)
     19: (8)           45: (3,2,2)         71: (20)
For example, the prime indices of 216 are {1,1,1,2,2,2}, and there are four permutations with distinct run-lengths: (1,1,2,2,2,1), (1,2,2,2,1,1), (2,1,1,1,2,2), (2,2,1,1,1,2); so 216 is in the sequence. It is the Heinz number of the Look-and-Say partition of (3,3,2,1).
		

Crossrefs

The Wilf case (distinct multiplicities) is A130091, counted by A098859.
The complement of the Wilf case is A130092, counted by A336866.
These partitions appear to be counted by A239455.
A variant for runs is A351201, counted by A351203 (complement A351204).
The complement is A351295, counted by A351293.
A032020 = number of binary expansions with distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A056239 = sum of prime indices, row sums of A112798.
A165413 = number of run-lengths in binary expansion, for all runs A297770.
A181819 = Heinz number of prime signature (prime shadow).
A182850/A323014 = frequency depth, counted by A225485/A325280.
A320922 ranks graphical partitions, complement A339618, counted by A000569.
A329739 = compositions with all distinct run-lengths, for all runs A351013.
A333489 ranks anti-runs, complement A348612.
A351017 = binary words with all distinct run-lengths, for all runs A351016.
A351292 = patterns with all distinct run-lengths, for all runs A351200.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Join@@ ConstantArray@@@FactorInteger[#]],UnsameQ@@Length/@Split[#]&]!={}&]

Extensions

Name edited by Gus Wiseman, Aug 13 2025

A044813 Positive integers having distinct base-2 run lengths.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 14, 15, 16, 24, 28, 30, 31, 32, 35, 39, 48, 49, 55, 57, 59, 60, 62, 63, 64, 67, 79, 96, 97, 111, 112, 120, 121, 123, 124, 126, 127, 128, 131, 135, 143, 159, 192, 193, 223, 224, 225, 239, 241, 247, 248, 249, 251, 252, 254, 255, 256, 259, 263
Offset: 1

Views

Author

Keywords

Comments

A005811(a(n)) = A165413(a(n)). - Reinhard Zumkeller, Mar 02 2013
From Emeric Deutsch, Jan 25 2018: (Start)
Also, the indices of the compositions that have distinct parts. For the definition of the index of a composition see A298644. For example, 223 is in the sequence since its binary form is 11011111 and the composition [2,1,5] has distinct parts. 100 is not in the sequence since its binary form is 1100100 and the parts of the composition [2,2,1,2] are not distinct.
The command c(n) from the Maple program yields the composition having index n. (End)

Crossrefs

Programs

  • Haskell
    import Data.List (group, nub)
    a044813 n = a044813_list !! (n-1)
    a044813_list = filter p [1..] where
       p x = nub xs == xs where
             xs = map length $ group $ a030308_row x
    -- Reinhard Zumkeller, Mar 02 2013
    
  • Maple
    Runs := proc (L) local j, r, i, k: j := 1: r[j] := L[1]: for i from 2 to nops(L) do if L[i] = L[i-1] then r[j] := r[j], L[i] else j := j+1: r[j] := L[i] end if end do: [seq([r[k]], k = 1 .. j)] end proc: RunLengths := proc (L) map(nops, Runs(L)) end proc: c := proc (n) ListTools:-Reverse(convert(n, base, 2)): RunLengths(%) end proc: A := {}: for n to 300 do if nops(convert(c(n), set)) = nops(c(n)) then A := `union`(A, {n}) else end if end do: A; # most of the Maple program is due to W. Edwin Clark. - Emeric Deutsch, Jan 25 2018
  • Mathematica
    f[n_] := Unequal@@Length/@Split[IntegerDigits[n,2]]; Select[Range[300],f] (* Ray Chandler, Oct 21 2011 *)
  • PARI
    is(n) = {
      my(v = 0, hist = vector(1 + logint(n+1, 2)));
      while(n != 0,
            v = valuation(n, 2); n >>= v; n++;
            hist[v+1]++; if (hist[v+1] >= 2, return(0));
            v = valuation(n, 2); n >>= v; n--;
            hist[v+1]++; if (hist[v+1] >= 2, return(0)));
      return(1);
    };
    seq(n) = {
      my(k = 1, top = 0, v = vector(n));
      while(top < n, if (is(k), v[top++] = k); k++);
      return(v);
    };
    seq(59) \\ Gheorghe Coserea, Nov 02 2015
    
  • Python
    from itertools import groupby
    def ok(n):
      runlengths = [len(list(g)) for k, g in groupby(bin(n)[2:])]
      return len(runlengths) == len(set(runlengths))
    print([i for i in range(1, 264) if ok(i)]) # Michael S. Branicky, Jan 04 2021

Formula

a(Sum_{k=0..n} A032020(k)) = 2^n, for n>1. - Gheorghe Coserea, May 30 2017

Extensions

Extended by Ray Chandler, Oct 21 2011

A351293 Number of non-Look-and-Say partitions of n. Number of integer partitions of n such that there is no way to choose a disjoint strict integer partition of each multiplicity.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 9, 14, 21, 28, 44, 56, 80, 111, 148, 192, 264, 335, 447, 575, 743, 937, 1213, 1513, 1924, 2396, 3011, 3715, 4646, 5687, 7040, 8600, 10556, 12804, 15650, 18897, 22930, 27593, 33296, 39884, 47921, 57168, 68360, 81295, 96807, 114685
Offset: 0

Views

Author

Gus Wiseman, Feb 16 2022

Keywords

Comments

First differs from A336866 (non-Wilf partitions) at a(9) = 14, A336866(9) = 15, the difference being the partition (2,2,2,1,1,1).
See A239455 for the definition of Look-and-Say partitions.

Examples

			The a(3) = 1 through a(9) = 14 partitions:
  (21)  (31)  (32)  (42)    (43)    (53)     (54)
              (41)  (51)    (52)    (62)     (63)
                    (321)   (61)    (71)     (72)
                    (2211)  (421)   (431)    (81)
                            (3211)  (521)    (432)
                                    (3221)   (531)
                                    (3311)   (621)
                                    (4211)   (3321)
                                    (32111)  (4221)
                                             (4311)
                                             (5211)
                                             (32211)
                                             (42111)
                                             (321111)
		

Crossrefs

The complement is counted by A239455, ranked by A351294.
These are all non-Wilf partitions (counted by A336866, ranked by A130092).
A variant for runs is A351203, complement A351204, ranked by A351201.
These partitions appear to be ranked by A351295.
Non-Wilf partitions in the complement are counted by A351592.
A000569 = graphical partitions, complement A339617.
A032020 = number of binary expansions with all distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A098859 = Wilf partitions (distinct multiplicities), ranked by A130091.
A181819 = Heinz number of the prime signature of n (prime shadow).
A329738 = compositions with all equal run-lengths.
A329739 = compositions with all distinct run-lengths, for all runs A351013.
A351017 = binary words with all distinct run-lengths, for all runs A351016.
A351292 = patterns with all distinct run-lengths, for all runs A351200.

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    Table[Length[Select[IntegerPartitions[n],Length[disjointFamilies[#]]==0&]],{n,0,15}] (* Gus Wiseman, Aug 13 2025 *)

Formula

a(n) = A000041(n) - A239455(n).

Extensions

Edited by Gus Wiseman, Aug 12 2025

A351295 Numbers whose multiset of prime factors has no permutation with all distinct run-lengths.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126, 129, 130, 132, 133, 134, 138, 140
Offset: 1

Views

Author

Gus Wiseman, Feb 16 2022

Keywords

Comments

First differs from A130092 (non-Wilf partitions) in lacking 216.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
      6: (2,1)         46: (9,1)         84: (4,2,1,1)
     10: (3,1)         51: (7,2)         85: (7,3)
     14: (4,1)         55: (5,3)         86: (14,1)
     15: (3,2)         57: (8,2)         87: (10,2)
     21: (4,2)         58: (10,1)        90: (3,2,2,1)
     22: (5,1)         60: (3,2,1,1)     91: (6,4)
     26: (6,1)         62: (11,1)        93: (11,2)
     30: (3,2,1)       65: (6,3)         94: (15,1)
     33: (5,2)         66: (5,2,1)       95: (8,3)
     34: (7,1)         69: (9,2)        100: (3,3,1,1)
     35: (4,3)         70: (4,3,1)      102: (7,2,1)
     36: (2,2,1,1)     74: (12,1)       105: (4,3,2)
     38: (8,1)         77: (5,4)        106: (16,1)
     39: (6,2)         78: (6,2,1)      110: (5,3,1)
     42: (4,2,1)       82: (13,1)       111: (12,2)
For example, the prime indices of 150 are {1,2,3,3}, with permutations and run-lengths (right):
  (3,3,2,1) -> (2,1,1)
  (3,3,1,2) -> (2,1,1)
  (3,2,3,1) -> (1,1,1,1)
  (3,2,1,3) -> (1,1,1,1)
  (3,1,3,2) -> (1,1,1,1)
  (3,1,2,3) -> (1,1,1,1)
  (2,3,3,1) -> (1,2,1)
  (2,3,1,3) -> (1,1,1,1)
  (2,1,3,3) -> (1,1,2)
  (1,3,3,2) -> (1,2,1)
  (1,3,2,3) -> (1,1,1,1)
  (1,2,3,3) -> (1,1,2)
Since none have all distinct run-lengths, 150 is in the sequence.
		

Crossrefs

Wilf partitions are counted by A098859, ranked by A130091.
Non-Wilf partitions are counted by A336866, ranked by A130092.
A variant for runs is A351201, counted by A351203 (complement A351204).
These partitions appear to be counted by A351293.
The complement is A351294, apparently counted by A239455.
A032020 = number of binary expansions with distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A056239 = sum of prime indices, row sums of A112798.
A165413 = number of distinct run-lengths in binary expansion.
A181819 = Heinz number of prime signature (prime shadow).
A182850/A323014 = frequency depth, counted by A225485/A325280.
A297770 = number of distinct runs in binary expansion.
A320922 ranks graphical partitions, complement A339618, counted by A000569.
A329739 = compositions with all distinct run-lengths, for all runs A351013.
A329747 = runs-resistance, counted by A329746.
A333489 ranks anti-runs, complement A348612.
A351017 = binary words with all distinct run-lengths, for all runs A351016.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Join@@ ConstantArray@@@FactorInteger[#]],UnsameQ@@Length/@Split[#]&]=={}&]

Extensions

Name edited by Gus Wiseman, Aug 13 2025
Showing 1-10 of 218 results. Next