A096579 Number of partitions of an n-set with exactly one even block.
0, 1, 3, 7, 25, 91, 329, 1415, 6297, 29431, 151085, 802099, 4506957, 26836083, 165586321, 1074740079, 7268876881, 50985776815, 372854157589, 2820244541675, 22087612114805, 179014336044171, 1495539626297689, 12894921568568999, 114481871464864825
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..591
Crossrefs
Cf. A003724.
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, t, add( `if`(t=1 and j::even, 0, binomial(n-1, j-1)* b(n-j, `if`(j::even, 1, t))), j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=1..30); # Alois P. Heinz, May 10 2016
-
Mathematica
Drop[ Range[0, 24]! CoefficientList[ Series[ E^Sinh[x]*(Cosh[x] - 1), {x, 0, 24}], x], 1] (* Robert G. Wilson v, Aug 17 2004 *)
Formula
E.g.f.: exp(sinh(x))*(cosh(x)-1). More generally, e.g.f. for the number of partitions of n-set with exactly k even blocks is 1/k!*exp(sinh(x))*(cosh(x)-1)^k.
Extensions
More terms from Robert G. Wilson v, Aug 17 2004