A096614 Decimal expansion of Sum_{n>=1} f(2^n)/2^n, where f(n) is the number of even digits in n.
1, 0, 3, 1, 6, 0, 6, 3, 8, 6, 4, 4, 5, 0, 9, 6, 1, 2, 2, 5, 1, 5, 4, 7, 7, 3, 5, 4, 1, 8, 7, 1, 3, 0, 3, 1, 0, 3, 9, 0, 2, 2, 6, 4, 1, 5, 2, 9, 2, 6, 9, 4, 0, 7, 0, 9, 5, 7, 6, 7, 3, 2, 4, 1, 2, 1, 1, 1, 0, 7, 2, 8, 3, 9, 2, 1, 4, 0, 7, 8, 9, 1, 6, 0, 5, 5, 6, 1, 7, 2, 3, 7, 5, 1, 1, 2, 0, 6, 8, 2, 4, 0, 0, 2, 5, 5
Offset: 1
Examples
1.03160638...
References
- Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, 2004, pp. 14-15.
Links
- Eric Weisstein's World of Mathematics, Digit Count.
- Index entries for transcendental numbers
Crossrefs
Cf. A055253.
Programs
-
Mathematica
RealDigits[-1/9 + Sum[(1 + Floor[k*Log10[2]])/2^k, {k, 1, 350}], 10, 100][[1]] (* Amiram Eldar, Nov 14 2020 *)
-
PARI
-1/9 + suminf(k=1, (1 + floor(k * log(2)/log(10)))/2^k) \\ Michel Marcus, Nov 14 2020
Formula
Equals -1/9 + Sum_{k>=1} (1 + floor(k * log_10(2)))/2^k. - Amiram Eldar, Nov 14 2020
Comments