A096622 Harmonic expansion (or factorial expansion) of the Euler-Mascheroni constant.
0, 1, 0, 1, 4, 1, 4, 1, 3, 0, 2, 3, 0, 5, 14, 12, 16, 14, 7, 13, 18, 17, 19, 11, 22, 13, 13, 26, 12, 16, 2, 26, 1, 2, 28, 18, 3, 27, 31, 27, 9, 7, 37, 28, 13, 26, 2, 34, 29, 47, 49, 34, 39, 10, 0, 42, 1, 9, 42, 1, 32, 61, 23, 57, 42, 32, 2, 12, 32, 32, 48, 42, 49, 15, 14, 39, 48
Offset: 1
Keywords
Examples
Euler gamma = 0 + 1/2! + 0/3! + 1/4! + 4/5! + 1/6! + 4/7! + 1/8! + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Harmonic Expansion
- Index entries for factorial base representation
Programs
-
Magma
SetDefaultRealField(RealField(250)); [Floor(EulerGamma(250))] cat [Floor(Factorial(n)*EulerGamma(250)) - n*Floor(Factorial((n-1))*EulerGamma(250)) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
-
Mathematica
With[{b = EulerGamma}, Table[If[n==1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
-
PARI
default(realprecision, 250); b = Euler; for(n=1, 80, print1( if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 26 2018
-
Sage
b = euler_gamma; def A096622(n): if (n==1): return floor(b) else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b)) [A096622(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018
Formula
Sum_{n>=1} a(n)/n! = Euler gamma = A001620. - G. C. Greubel, Nov 26 2018