cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096622 Harmonic expansion (or factorial expansion) of the Euler-Mascheroni constant.

Original entry on oeis.org

0, 1, 0, 1, 4, 1, 4, 1, 3, 0, 2, 3, 0, 5, 14, 12, 16, 14, 7, 13, 18, 17, 19, 11, 22, 13, 13, 26, 12, 16, 2, 26, 1, 2, 28, 18, 3, 27, 31, 27, 9, 7, 37, 28, 13, 26, 2, 34, 29, 47, 49, 34, 39, 10, 0, 42, 1, 9, 42, 1, 32, 61, 23, 57, 42, 32, 2, 12, 32, 32, 48, 42, 49, 15, 14, 39, 48
Offset: 1

Views

Author

Eric W. Weisstein, Jul 01 2004

Keywords

Examples

			Euler gamma = 0 + 1/2! + 0/3! + 1/4! + 4/5! + 1/6! + 4/7! + 1/8! + ...
		

Crossrefs

Cf. A001620 (decimal expansion), A002852 (continued fraction).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(EulerGamma(250))] cat [Floor(Factorial(n)*EulerGamma(250)) - n*Floor(Factorial((n-1))*EulerGamma(250)) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
    
  • Mathematica
    With[{b = EulerGamma}, Table[If[n==1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    default(realprecision, 250); b = Euler; for(n=1, 80, print1( if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 26 2018
    
  • Sage
    b = euler_gamma;
    def A096622(n):
        if (n==1): return floor(b)
        else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b))
    [A096622(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

Formula

Sum_{n>=1} a(n)/n! = Euler gamma = A001620. - G. C. Greubel, Nov 26 2018