A096625 Denominators of the Riemann prime counting function.
1, 1, 1, 2, 2, 2, 2, 6, 3, 3, 3, 3, 3, 3, 3, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60
Offset: 1
Examples
0, 1, 2, 5/2, 7/2, 7/2, 9/2, 29/6, 16/3, 16/3, 19/3, ...
References
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 167.
Links
- Eric Weisstein's World of Mathematics, Riemann Prime Counting Function
Crossrefs
Cf. A096624.
Programs
-
Mathematica
Table[Sum[PrimePi[x^(1/k)]/k, {k, Log2[x]}], {x, 100}] // Denominator (* Eric W. Weisstein, Jan 09 2019 *)
-
PARI
a(n) = denominator(sum(k=1, n, if (p=isprimepower(k), 1/p))); \\ Michel Marcus, Jan 07 2019
-
PARI
a(n) = denominator(sum(k=1, logint(n, 2), primepi(sqrtnint(n, k))/k)); \\ Daniel Suteu, Jan 07 2019