cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096625 Denominators of the Riemann prime counting function.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 6, 3, 3, 3, 3, 3, 3, 3, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60
Offset: 1

Views

Author

Eric W. Weisstein, Jul 01 2004

Keywords

Examples

			0, 1, 2, 5/2, 7/2, 7/2, 9/2, 29/6, 16/3, 16/3, 19/3, ...
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 167.

Crossrefs

Cf. A096624.

Programs

  • Mathematica
    Table[Sum[PrimePi[x^(1/k)]/k, {k, Log2[x]}], {x, 100}] // Denominator (* Eric W. Weisstein, Jan 09 2019 *)
  • PARI
    a(n) = denominator(sum(k=1, n, if (p=isprimepower(k), 1/p))); \\ Michel Marcus, Jan 07 2019
    
  • PARI
    a(n) = denominator(sum(k=1, logint(n, 2), primepi(sqrtnint(n, k))/k)); \\ Daniel Suteu, Jan 07 2019