A096635 Let p = n-th prime == 7 mod 8 (A007522); a(n) = smallest prime q such that p is not a square mod q.
5, 3, 7, 3, 3, 11, 5, 5, 11, 3, 3, 7, 5, 3, 3, 7, 3, 3, 5, 3, 3, 7, 5, 3, 5, 3, 3, 5, 13, 3, 3, 5, 3, 17, 5, 3, 3, 3, 3, 11, 5, 3, 17, 3, 7, 5, 5, 3, 3, 3, 7, 7, 5, 3, 5, 3, 7, 5, 3, 5, 11, 3, 3, 5, 3, 5, 3, 3, 5, 11, 5, 3, 13, 3, 3, 7, 7, 11, 3, 3, 3, 3, 5, 3, 7, 5, 19, 3, 5, 3, 3, 3, 5, 3, 7, 3, 5, 3, 13
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
P:= select(isprime, [seq(i,i=7..3000,8)]): f:= proc(n) local p,q; p:= P[n]; q:= 2; while numtheory:-quadres(p,q)=1 do q:= nextprime(q) od; q end proc: map(f, [$1..nops(P)]); # Robert Israel, Mar 13 2020
-
Mathematica
f[n_] := Block[{k = 2}, While[ JacobiSymbol[n, Prime[k]] == 1, k++ ]; Prime[k]]; f /@ Select[ Prime[ Range[435]], Mod[ #, 8] == 7 &]