A096681 Least k such that decimal representation of k*n contains only digits 0 and 2.
2, 1, 74, 5, 4, 37, 286, 25, 24691358, 2, 2, 185, 154, 143, 148, 125, 1306, 12345679, 1158, 1, 962, 1, 9574, 925, 8, 77, 81563786, 715, 75938, 74, 7162, 625, 6734, 653, 572, 61728395, 6, 579, 518, 5, 542, 481, 51214, 5, 49382716, 4787, 426, 4625, 44898, 4
Offset: 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
isok(n) = my(vd = vecsort(digits(n),,8)); (vd == [0,2]) || (vd == [2]); a(n) = my(k=1); while(!isok(k*n), k++); k; \\ Michel Marcus, Sep 25 2016
-
Python
def next02(n): s = str(n) if s > '2'*len(s): return int('2' + '0'*len(s)) for i, c in enumerate(s): if c == '1': return int(s[:i] + '2' + '0'*(len(s)-i-1)) elif s[i:] > '2'*(len(s)-i): return int(s[:i-1] + '2' + '0'*(len(s)-i)) def a(n): k = 1 while set(str(k*n)) - set('02') != set(): k = max(k+1, next02(k*n)//n) return k print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 01 2021
Formula
a(n) = A078241(n)/n.