A096686 Least k such that decimal representation of k*n contains only digits 0 and 7.
7, 35, 259, 175, 14, 1295, 1, 875, 86419753, 7, 7, 6475, 539, 5, 518, 4375, 4571, 432098765, 4053, 35, 37, 35, 33509, 32375, 28, 2695, 285473251, 25, 265783, 259, 25067, 21875, 23569, 22855, 2, 2160493825, 21, 20265, 1813, 175, 1897, 185, 179249
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local q, q2, q5, n1, R, Agenda,d, newA, t, t1, t2; q2:= padic:-ordp(n,2); q5:= padic:-ordp(n,5); q:= max(q2,q5); n1:= n/2^q2/5^q5; R[7]:= 7: Agenda:= {7}: if 7 mod n1 = 0 then return 10^q*7/n fi; for d from 2 do newA:= NULL; for t in Agenda do t1:= 10*t mod n1; if not assigned(R[t1]) then R[t1]:= 10*R[t]; newA:= newA, t1; fi; t2:= (10*t+7) mod n1; if t2 = 0 then return 10^q*(10*R[t]+7)/n; break elif not assigned(R[t2]) then R[t2]:= 10*R[t]+7; newA:= newA,t2; fi; od; Agenda:= [newA]; od: end proc: map(f, [$1..50]); # Robert Israel, Mar 06 2017
-
Mathematica
f07[n_]:=Module[{k=1},While[!SubsetQ[{0,7},IntegerDigits[n*k]],k++];k]; Array[f07,8] (* The program generates the first 8 terms of the sequence. To generate more, increase the Array constant but because some of the terms are quite large the program may take a long time to run. *) (* Harvey P. Dale, Sep 25 2024 *)
Formula
a(n) = A078246(n)/n.