A096699 Balanced primes of order seven.
29, 977, 1381, 1439, 3109, 3539, 4357, 4397, 5563, 7159, 8273, 8737, 10711, 11117, 13109, 13841, 15101, 18731, 18839, 20543, 21391, 21851, 23459, 24877, 27653, 28477, 28697, 30677, 32029, 32971, 34631, 35863, 36979, 37019, 37529, 38189
Offset: 1
Keywords
Examples
29 is a member because 29 = (5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59)/15.
Links
- Aaron Toponce, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
GAP
P:=Filtered([1..70000],IsPrime);; a:=List(Filtered(List([0..5000],k->List([8..22],j->P[j-7+k])),i-> Sum(i)/15=i[8]),m->m[8]); # Muniru A Asiru, Feb 14 2018
-
Mathematica
Transpose[ Select[ Partition[ Prime[ Range[5000]], 15, 1], #[[8]] == (#[[1]] + #[[2]] + #[[3]] + #[[4]] + #[[5]] + #[[6]] + #[[7]] + #[[9]] + #[[10]] + #[[11]] + #[[12]] + #[[13]] + #[[14]] + #[[15]])/14 &]][[8]] (* Second program: *) With[{k = 7}, Select[MapIndexed[{Prime[First@ #2 + k], #1} &, Mean /@ Partition[Prime@ Range[5000], 2 k + 1, 1]], SameQ @@ # &][[All, 1]]] (* Michael De Vlieger, Feb 15 2018 *)
-
PARI
isok(p) = {if (isprime(p), k = primepi(p); if (k > 7, sum(i=k-7, k+7, prime(i)) == 15*p;););} \\ Michel Marcus, Mar 07 2018