cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A096693 Balance index of each prime.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 4, 0, 0, 5, 1, 0, 0, 1, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 1, 0, 1, 0, 1, 0, 2, 0, 2, 1, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Robert G. Wilson v, Jun 26 2004

Keywords

Comments

a(n) = the number of values of k for which the n-th prime is equal to the arithmetic average of the k primes above and below it.
The average of the first n balance indexes appears to reach a global maximum of 0.588 when n = 85, (prime(85) = 439).

Examples

			a(3) = 1 because the third prime, 5, equals (3 + 7)/2.
a(16) = 3 because the sixteenth prime, 53, equals (47 + 59)/2 = (41 + 43 + 47 + 59 + 61 + 67)/6 = (31 + 37 + 41 + 43 + 47 + 59 + 61 + 67 + 71 + 73)/10.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 0, k = 1, p = Prime[n], s = Plus @@ Table[ Prime[i], {i, n - 1, n + 1}]}, While[k != n - 1, If[s == (2k + 1)p, c++ ]; k++; s = s + Prime[n - k] + Prime[n + k]]; c]; Table[ f[n], {n, 105}]
  • PARI
    b-file generator: {max_n = 10^4; for (n = 1, max_n, c = 0; k = 1; p = prime(n); s = p; while (k < n, s = s + prime(n - k) + prime(n + k); if (s == (2 * k + 1) * p, c++); k++;); print(n " " c);) ;}

Extensions

Corrected and edited by Christopher Hunt Gribble, Apr 06 2010

A096697 Balanced primes of order five.

Original entry on oeis.org

53, 89, 157, 421, 433, 823, 991, 1297, 1709, 1873, 2347, 2411, 2441, 2729, 2797, 3617, 4793, 5059, 5417, 6343, 6781, 7583, 7933, 8581, 8861, 9029, 9857, 11213, 11953, 12329, 13229, 14081, 14411, 15767, 15889, 16561, 16889, 17029, 20297, 22469
Offset: 1

Views

Author

Robert G. Wilson v, Jun 26 2004

Keywords

Examples

			53 is a member because 53 = (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73)/11. 53 is also an order one balance prime (A006562) and an order three balanced prime (A082078), thus it has an balanced index of three (A096707).
		

Crossrefs

Programs

  • GAP
    P:=Filtered([1..70000],IsPrime);;
    a:=List(Filtered(List([0..3000],k->List([6..16],j->P[j-5+k])),i->
    Sum(i)/11=i[6]),m->m[6]); # Muniru A Asiru, Feb 14 2018
    
  • Mathematica
    Transpose[ Select[ Partition[ Prime[ Range[5000]], 11, 1], #[[6]] == (#[[1]] + #[[2]] + #[[3]] + #[[4]] + #[[5]] + #[[7]] + #[[8]] + #[[9]] + #[[10]] + #[[11]])/10 &]][[6]]
    (* Second program: *)
    With[{k = 5}, Select[MapIndexed[{Prime[First@ #2 + k], #1} &, Mean /@ Partition[Prime@ Range[3000], 2 k + 1, 1]], SameQ @@ # &][[All, 1]]] (* Michael De Vlieger, Feb 15 2018 *)
  • PARI
    isok(p) = {if (isprime(p), k = primepi(p); if (k > 5, sum(i=k-5, k+5, prime(i)) == 11*p;););} \\ Michel Marcus, Mar 07 2018

A096705 Balanced primes of index 1.

Original entry on oeis.org

5, 17, 29, 37, 71, 79, 89, 137, 149, 151, 179, 193, 227, 229, 257, 281, 359, 373, 383, 419, 421, 433, 487, 491, 563, 577, 593, 631, 643, 653, 659, 677, 701, 733, 757, 823, 877, 947, 953, 983, 991, 1013, 1021, 1087, 1091, 1103, 1123, 1171, 1193, 1217, 1223
Offset: 1

Views

Author

Robert G. Wilson v, Jun 28 2004

Keywords

Examples

			17 is a member because 17 = (7 + 11 + 13 + 17 + 19 + 23 + 29)/7 only.
		

Crossrefs

Programs

  • Mathematica
    g[n_] := Block[{c = 0, k = 1, p = Prime[n], s = Plus @@ Table[ Prime[i], {i, n - 1, n + 1}]}, While[k != n - 1, If[s == (2k + 1)p, c++ ]; k++; s = s + Prime[n - k] + Prime[n + k]]; c]; Prime[ Select[ Range[2, 250], f[ # ] == 1 &]]

A096706 Balanced primes (A090403) of index 2.

Original entry on oeis.org

211, 263, 349, 397, 409, 439, 709, 751, 787, 827, 1153, 1187, 1259, 1487, 1523, 1531, 2281, 2287, 2347, 2621, 3037, 3109, 3313, 3329, 3539, 3673, 4357, 4397, 4493, 4951, 4969, 4987, 5189, 5303, 5347, 5857, 6323, 6337, 7583, 7907, 7933, 8429, 8713, 8821, 8951
Offset: 1

Views

Author

Robert G. Wilson v, Jun 28 2004

Keywords

Examples

			263 is a member because 263 = (257 + 263 + 269)/3
= (179 + 181 + 191 + 193 + 197 + 199 + 211 + 223 + 227 + 229 + 233 + 239 + 241 + 251 + 257 + 263 + 269 + 271 + 277 + 281 + 283 + 293 + 307 + 311 + 313 + 317 + 331 + 337 + 347 + 349 + 353)/31.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 0, k = 1, p = Prime[n], s = Plus @@ Table[ Prime[i], {i, n - 1, n + 1}]}, While[k != n - 1, If[s == (2k + 1)p, c++ ]; k++; s = s + Prime[n - k] + Prime[n + k]]; c]; Prime[ Select[ Range[2, 250], f[ # ] == 2 &]]

Extensions

a(45) from Robert Price, Nov 29 2023

A096709 Balanced primes (A090403) of index 5.

Original entry on oeis.org

173, 124991, 232607, 491423, 701489, 1356337, 2455681, 3128803, 5218607, 9459683, 10563461, 13228247, 14606029, 16282921, 18216137, 20378273, 21622201, 35201909, 36549169, 38638969, 39246689, 42074017, 43048039, 48961859
Offset: 1

Views

Author

Robert G. Wilson v, Jun 28 2004

Keywords

Examples

			124991 is a member because 124991 = (124673 + ... + 125329)/59
= (124543 + ... + 125423)/75 = (124193 + ... + 125777)/137 = (124133 + ... + 125887)/151
= (123931 + ... + 126031)/181.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 0, k = 1, p = Prime[n], s = Plus @@ Table[ Prime[i], {i, n - 1, n + 1}]}, While[k != n - 1, If[s == (2k + 1)p, c++ ]; k++; s = s + Prime[n - k] + Prime[n + k]]; c]; Prime[ Select[ Range[2, 25797], f[ # ] == 5 &]]

Extensions

a(6)-a(24) from Donovan Johnson, Apr 09 2010

A096695 Least balanced prime (A090403) of index n (A096693).

Original entry on oeis.org

2, 5, 211, 53, 157, 173, 304517
Offset: 0

Views

Author

Robert G. Wilson v, Jun 26 2004

Keywords

Examples

			a(1) = 5 because 5 = (3 + 5 + 7)/3.
a(2) = 211 because 211 = (199 + 211 + 223)/3
= (179 + 181 + 191 + 193 + 197 + 199 + 211 + 223 + 227 + 229 + 233 + 239 + 241)/13.
a(3) = 53 because 53 = (47 + 53 + 59)/3 = (41 + 43 + 47 + 53 + 59 + 61 + 67)/7
= (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73)/11.
a(4) = 157 because 157 = (151 + 157 + 163)/3 = (139 + 149 + 151 + 157 + 163 + 167 + 173)/7
= (131 + 137 + 139 + 149 + 151 + 157 + 163 + 167 + 173 + 179 + 181)/11
= (97 + 101 + 103 + 107 + 109 + 113 + 127 + 131 + 137 + 139 + 149 + 151 + 157 + 163 + 167 + 173 + 179 + 181 + 191 + 193 + 197 + 199 + 211 + 223 + 227)/25.
a(5) = 173 because 173 = (167 + 173 + 179)/3 = (157 + 163 + 167 + 173 + 179 + 181 + 191)/7
= (131 + 137 + 139 + 149 + 151 + 157 + 163 + 167 + 173 + 179 + 181 + 191 + 193 + 197 + 199 + 211 + 223)/17
= (109 + 113 + 127 + 131 + 137 + 139 + 149 + 151 + 157 + 163 + 167 + 173 + 179 + 181 + 191 + 193 + 197 + 199 + 211 + 223 + 227 + 229 + 233)/23
= (107 + 109 + 113 + 127 + 131 + 137 + 139 + 149 + 151 + 157 + 163 + 167 + 173 + 179 + 181 + 191 + 193 + 197 + 199 + 211 + 223 + 227 + 229 + 233 + 239)/25.
a(6) = 304517 because 304517 = (304511 + 304517 + 304523)/3
= (304489 + 304501 + 304511 + 304517 + 304523 + 304537 + 304541)/7
= (304481 + 304489 + 304501 + 304511 + 304517 + 304523 + 304537 + 304541 + 304553)/9
= (303691 + ... + 304517 + ... + 305339)/135 = (303649 + ... + 304517 + ... + 305369)/143
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 0, k = 1, p = Prime[n], s = Plus @@ Table[ Prime[i], {i, n - 1, n + 1}]}, While[k != n - 1, If[s == (2k + 1)p, c++ ]; k++; s = s + Prime[n - k] + Prime[n + k]]; c]; t = Table[0, {15}]; Do[a = f[n]; If[a < 50 && t[[a + 1]] == 0, t[[a + 1]] = Prime[n]; Print[a + 1, " = ", Prime[n]]], {n, 32000}]; t

A096708 Balanced primes (A090403) of index 4.

Original entry on oeis.org

157, 353, 8233, 23893, 26183, 30197, 63697, 118831, 131041, 150203, 152213, 167033, 198013, 293087, 341303, 383983, 494051, 494723, 534007, 551569, 601949, 603541, 629203, 666697, 671287, 679417, 688907, 768203, 787207, 796867, 826039
Offset: 1

Views

Author

Robert G. Wilson v, Jun 28 2004

Keywords

Examples

			353 is a member because 353 = (281 + ...353 + ... + 421)/23
= (271 + .. + 353 + ... + 433)/27 = (241 + ... + 353 + ... + 461)/37 = (227 + ... + 353 + ... + 487)/45.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 0, k = 1, p = Prime[n], s = Plus @@ Table[ Prime[i], {i, n - 1, n + 1}]}, While[k != n - 1, If[s == (2k + 1)p, c++ ]; k++; s = s + Prime[n - k] + Prime[n + k]]; c]; Prime[ Select[ Range[2, 25797], f[ # ] == 4 &]]

Extensions

a(17)-a(31) from Donovan Johnson, Apr 09 2010
Showing 1-7 of 7 results.