cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A096718 Denominators of terms in series expansion of arcsin(arctan(x)).

Original entry on oeis.org

1, 6, 120, 5040, 362880, 4435200, 32947200, 145297152000, 69701632000, 13516122267648000, 5676771352412160000, 2872446304320552960000, 1723467782592331776000000, 1935799013407707050803200, 485144691014524112732160000, 1353553687930522274522726400000, 204193242064947360270857011200000
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			arcsin(arctan(x)) = x - 1/6*x^3 + 13/120*x^5 - 341/5040*x^7 + 18649/362880*x^9 - 177761/4435200*x^11 + ...
		

Crossrefs

Programs

  • Mathematica
    Denominator[Take[CoefficientList[Series[ArcSin[ArcTan[x]], {x,0,40}], x], {2,-1,2}]] (* G. C. Greubel, Nov 17 2016 *)

A096717 Numerators of terms in series expansion of arcsin(arctan(x)).

Original entry on oeis.org

1, -1, 13, -341, 18649, -177761, 1087433, -4043494549, 1674761567, -284891766539657, 106410874319325461, -48402125366670946877, 26344930021064765797249, -27048608191991004321089, 6237195766537863970288933, -16102066950215127630856787159, 2258820895862623437612519923989
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			arcsin(arctan(x)) = x - 1/6*x^3 + 13/120*x^5 - 341/5040*x^7 + 18649/362880*x^9 - 177761/4435200*x^11 + ...
		

Crossrefs

Programs

  • Mathematica
    Numerator[Take[CoefficientList[Series[ArcSin[ArcTan[x]], {x,0,50}], x], {2, -1, 2}]] (* G. C. Greubel, Nov 17 2016 *)

A096721 Numerators of terms in series expansion of arcsin(arctan(x)) - arctan(arcsin(x)).

Original entry on oeis.org

0, 0, 0, -1, 13, -2329, 3749, -1405132357, 41223659, -3230487913, 87420689313263, -92876785811395309, 6545378422138547141, -76226954122169434345117, 13717355610784766550119, -152042860419225571514252591, 325359516347299085987218014617, -501994552683503696983628163720749, 226141284010354023120430917899293
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			arcsin(arctan(x)) - arctan(arcsin(x)) = -1/30*x^7 + 13/756*x^9 - 2329/75600*x^11 + 3749/199584*x^13 - 1405132357/54486432000*x^15 + ...
		

Crossrefs

Programs

  • Mathematica
    With[{nn=40},Numerator[Take[CoefficientList[Series[ArcSin[ArcTan[x]] - ArcTan[ArcSin[x]],{x,0,nn}],x],{2,-1,2}]]] (* Harvey P. Dale, Dec 07 2011 *)

A096725 Numerators of terms in series expansion of (sin(tan(x)) - tan(sin(x))) / (arcsin(arctan(x)) - arctan(arcsin(x))).

Original entry on oeis.org

1, 5, 1313, -2773, -701933647, -86849082293, -174426488476171, -130176915706274917, -42426469007472079018663, -24495552034235134641205327, -3019410235003955483667737236843, -74265172933666226350348992663473, -2457268368880426576340457161112391, -589361165665450343618737576026916723726003
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			(sin(tan(x)) - tan(sin(x))) / (arcsin(arctan(x)) - arctan(arcsin(x))) = 1 + 5/3*x^2 + 1313/1890*x^4 - 2773/11907*x^6 - 701933647/1650310200*x^8 - 86849082293/270320810760*x^10 - ...
		

References

  • V. I. Arnold, Huygens and Barrow, Newton and Hooke, Birkhäuser, Basel, 1990.

Crossrefs

Programs

  • Mathematica
    Numerator[Take[CoefficientList[Series[(Sin[Tan[x]] - Tan[Sin[x]]) / (ArcSin[ArcTan[x]] - ArcTan[ArcSin[x]]), {x,0,50}], x], {1, -1, 2}]] (* G. C. Greubel, Nov 20 2016 *)

A096730 Denominators of terms in series expansion of (sin(tan(x)) - tan(sin(x))) / (arcsin(arctan(x)) - arctan(arcsin(x))).

Original entry on oeis.org

1, 3, 1890, 11907, 1650310200, 270320810760, 851510553894000, 1003164583542521400, 480315202600159246320000, 393378150929530422736080000, 62700543476657854079903791200000, 1975067119514722403516969422800000, 76571832941186160874811737622400000
Offset: 0

Views

Author

N. J. A. Sloane, Aug 15 2004

Keywords

Examples

			(sin(tan(x)) - tan(sin(x))) / (arcsin(arctan(x)) - arctan(arcsin(x))) = 1 + 5/3*x^2 + 1313/1890*x^4 - 2773/11907*x^6 - 701933647/1650310200*x^8 - 86849082293/270320810760*x^10 - ...
		

References

  • V. I. Arnold, Huygens and Barrow, Newton and Hooke, Birkhäuser, Basel, 1990.

Crossrefs

Programs

  • Mathematica
    Denominator[Take[CoefficientList[Series[(Sin[Tan[x]] - Tan[Sin[x]]) / (ArcSin[ArcTan[x]] - ArcTan[ArcSin[x]]), {x, 0, 10}], x], {1, -1, 2}]] (* G. C. Greubel, Nov 20 2016 *)
Showing 1-5 of 5 results.