A096739 Numbers k such that k^4 can be written as a sum of four distinct positive 4th powers.
353, 651, 706, 1059, 1302, 1412, 1765, 1953, 2118, 2471, 2487, 2501, 2604, 2824, 2829, 3177, 3255, 3530, 3723, 3883, 3906, 3973, 4236, 4267, 4333, 4449, 4557, 4589, 4942, 4949, 4974, 5002, 5208, 5281, 5295, 5463, 5491, 5543, 5648, 5658, 5729, 5859
Offset: 1
Keywords
Examples
Example solutions: 353^4 = 30^4 + 120^4 + 272^4 + 315^4; 706^4 = 60^4 + 240^4 + 544^4 + 630^4; 1059^4 = 90^4 + 360^4 + 816^4 + 945^4; 1302^4 = 480^4 + 680^4 + 860^4 + 1198^4; 1412^4 = 120^4 + 480^4 + 1088^4 + 1260^4; 3723^4 = 2270^4 + 2345^4 + 2460^4 + 3152^4.
References
- D. Wells, Curious and interesting numbers, Penguin Books, p. 139.
Links
- K. Rose and S. Brudno, More about four biquadrates equal one biquadrate, Math. Comp., 27 (1973), 491-494.
- Eric Weisstein's World of Mathematics, Diophantine Equation 4th Powers.
Extensions
Corrected by Bo Asklund (boa(AT)mensa.se), Nov 05 2004
Corrected and extended by David Wasserman, Nov 16 2007
Comments